ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the melting of a double stranded DNA in the presence of stretching forces, via 3D Monte-Carlo simulations, exactly solvable models and heuristic arguments. The resulting force-temperature phase diagram is dramatically different for the cases where the force is applied to only one strand or to both. Different assumptions on the monomer size of single and double stranded DNA lead to opposite conclusions as to whether DNA melts or not as it overstretches.
We study numerically the rheological properties of a slab of active gel close o the isotropic-nematic transition. The flow behavior shows strong dependence on sample size, boundary conditions, and on the bulk constitutive curve, which, on entering th e nematic phase, acquires an activity-induced discontinuity at the origin. The precursor of this within the metastable isotropic phase for contractile systems ({em e.g.,} actomyosin gels) gives a viscosity divergence; its counterpart for extensile ({em e.g.,} {em B. subtilis}) suspensions admits instead a shear-banded flow with zero apparent viscosity.
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and a n active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently ``extensile rods, in the case of flow-aligning liquid crystals, and for sufficiently ``contractile ones for flow-tumbling materials. In a quasi-1D geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, re-arrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of ``convection rolls. These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behaviour of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behaviour of active nematics.
Active liquid crystals or active gels are soft materials which can be physically realised e.g. by preparing a solution of cytoskeletal filaments interacting with molecular motors. We study the hydrodynamics of an active liquid crystal in a slab-like geometry with various boundary conditions, by solving numerically its equations of motion via lattice Boltzmann simulations. In all cases we find that active liquid crystals can sustain spontaneous flow in steady state contrarily to their passive counterparts, and in agreement with recent theoretical predictions. We further find that conflicting anchoring conditions at the boundaries lead to spontaneous flow for any value of the activity parameter, while with unfrustrated anchoring at all boundaries spontaneous flow only occurs when the activity exceeds a critical threshold. We finally discuss the dynamic pathway leading to steady state in a few selected cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا