ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the mean squared displacement of a Brownian particle in a medium with a spatially varying local diffusivity which is assumed to be periodic. When the system is asymptotically diffusive the mean squared displacement, characterizing the disp ersion in the system, is, at late times, a linear function of time. A Kubo type formula is given for the mean squared displacement which allows the recovery of some known results for the effective diffusion constant $D_e$ in a direct way, but also allows an understanding of the asymptotic approach to the diffusive limit. In particular, as well as as computing the slope of a linear fit to the late time mean squared displacement, we find a formula for the constant where the fit intersects the y axis.
We consider how membrane fluctuations can modify the miscibility of lipid mixtures, that is to say how the phase diagram of a boundary-constrained membrane is modified when the membrane is allowed to fluctuate freely in the case of zero surface tensi on. In order for fluctuations to have an effect, the different lipid types must have differing Gaussian rigidities. We show, somewhat paradoxically, that fluctuation-induced interactions can be treated approximately in a mean-field type theory. Our calculations predict that, depending on the difference in bending and Gaussian rigidity of the lipids, membrane fluctuations can either favor or disfavor mixing.
A Langevin process diffusing in a periodic potential landscape has a time dependent diffusion constant which means that its average mean squared displacement (MSD) only becomes linear at late times. The long time, or effective diffusion constant, can be estimated from the slope of a linear fit of the MSD at late times. Due to the cross over between a short time microscopic diffusion constant, which is independent of the potential, to the effective late time diffusion constant, a linear fit of the MSD will not in general pass through the origin and will have a non-zero constant term. Here we address how to compute the constant term and provide explicit results for Brownian particles in one dimension in periodic potentials. We show that the constant is always positive and that at low temperatures it depends on the curvature of the minimum of the potential. For comparison we also consider the same question for the simpler problem of a symmetric continuous time random walk in discrete space. Here the constant can be positive or negative and can be used to determine the variance of the hopping time distribution.
We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived s tarting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Huckel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds.
65 - D.S. Dean , R.R. Horgan , A. Naji 2009
We study the thermal Casimir effect between two thick slabs composed of plane-parallel layers of random dielectric materials interacting across an intervening homogeneous dielectric. It is found that the effective interaction at long distances is sel f averaging and is given by a description in terms of effective dielectric functions. The behavior at short distances becomes random (sample dependent) and is dominated by the local values of the dielectric function proximal to each other across the dielectrically homogeneous slab.
114 - D.S. Dean , R.R. Horgan 2007
Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk mem brane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed, as well as the effective interaction between the two phases in the tensionless case where the two phases have differing bending rigidities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا