ترغب بنشر مسار تعليمي؟ اضغط هنا

64 - David Neuffer 2012
The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of micros produced from a proton source target is explored. It requires a drift section from the target, a bunching secti on and a -E rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the s into a train of equal-energy bunches suitable for cooling and acceleration. Optimization and variations are discussed. An important concern is rf limitations within the focusing magnetic fields, mitigation procedures are described. The method can be extended to provide muons for a micro+-micro < Collider, variations toward optimizing that extension are discussed.
206 - D. Neuffer 2012
We discuss the design of the muon capture front end of the neutrino factory International Design Study. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high energy where their decays provide neutrino beams. For the International Design Study (IDS), a baseline design must be developed and optimized for an engineering and cost study. We present a baseline design that can be used to establish the scope of a future neutrino Factory facility.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا