ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper addresses how to calculate and interpret the time-delayed mutual information for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can be also be used to understand the degree of homo- or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.
Time-delay systems are, in many ways, a natural set of dynamical systems for natural scientists to study because they form an interface between abstract mathematics and data. However, they are complicated because past states must be sensibly incorpor ated into the dynamical system. The primary goal of this paper is to begin to isolate and understand the effects of adding time-delay coordinates to a dynamical system. The key results include (i) an analytical understanding regarding extreme points of a time-delay dynamical system framework including an invariance of entropy and the variance of the Kaplan-Yorke formula with simple time re-scalings; (ii) computational results from a time-delay mapping that forms a path between dynamical systems dependent upon the most distant and the most recent past; (iii) the observation that non-trivial mixing of past states can lead to high-dimensional, high-entropy dynamics that are not easily reduced to low-dimensional dynamical systems; (iv) the observed phase transition (bifurcation) between low-dimensional, reducible dynamics and high or infinite-dimensional dynamics; and (v) a convergent scaling of the distribution of Lyapunov exponents, suggesting that the infinite limit of delay coordinates in systems such are the ones we study will result in a continuous or (dense) point spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا