ﻻ يوجد ملخص باللغة العربية
Time-delay systems are, in many ways, a natural set of dynamical systems for natural scientists to study because they form an interface between abstract mathematics and data. However, they are complicated because past states must be sensibly incorporated into the dynamical system. The primary goal of this paper is to begin to isolate and understand the effects of adding time-delay coordinates to a dynamical system. The key results include (i) an analytical understanding regarding extreme points of a time-delay dynamical system framework including an invariance of entropy and the variance of the Kaplan-Yorke formula with simple time re-scalings; (ii) computational results from a time-delay mapping that forms a path between dynamical systems dependent upon the most distant and the most recent past; (iii) the observation that non-trivial mixing of past states can lead to high-dimensional, high-entropy dynamics that are not easily reduced to low-dimensional dynamical systems; (iv) the observed phase transition (bifurcation) between low-dimensional, reducible dynamics and high or infinite-dimensional dynamics; and (v) a convergent scaling of the distribution of Lyapunov exponents, suggesting that the infinite limit of delay coordinates in systems such are the ones we study will result in a continuous or (dense) point spectrum.
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterat
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding charac
External and internal factors may cause a systems parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed
We present a comprehensive investigation of $epsilon$-entropy, $h(epsilon)$, in dynamical systems, stochastic processes and turbulence. Particular emphasis is devoted on a recently proposed approach to the calculation of the $epsilon$-entropy based o
We give a description of the link between topological dynamical systems and their dimension groups. The focus is on minimal systems and, in particular, on substitution shifts. We describe in detail the various classes of systems including Sturmian sh