ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - Daniel Jeans 2015
We present a novel method for the reconstruction of events containing pairs of hadronically decaying tau leptons at collider experiments. This method relies on accurate knowledge of the tau production vertex and precise measurement of its charged dec ay products. The method makes no assumptions about the centre-of-mass or invariant mass of the tau pair, and is insensitive to momentum loss along the beam direction. We demonstrate the method using e+e- -> mu+ mu- tau+ tau- events fully simulated in the ILD detector.
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test b eam at DESY with momenta between 1 and 6 GeV/c. The prototypes performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.
The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuratio n of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.
This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different modules 0 (barrel and endcap) fo r a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation of production.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا