ترغب بنشر مسار تعليمي؟ اضغط هنا

In the simulation of QCD with 2+1 flavors of Wilson fermions, the positivity of the fermion determinant is generally assumed. We present evidence that this assumption is in general not justified and discuss the consequences of this finding.
We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are genera ted in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge action. We use five lattice spacings and two values of the light sea quark mass to extrapolate the results to the physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the determination of the energies of the ground states in each channel. We present and implement a continuum extrapolation within the Fermilab interpretation, based on power-counting arguments, and thoroughly discuss all sources of systematic uncertainty. We compare our results for various mass splittings with their experimental values, namely, the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin-orbit and tensor splittings. Given the uncertainty related to the width of the resonances, we find excellent agreement.
We report recent efforts by CLS to generate an ensemble with physical light- and strange-quark masses in a lattice volume of 192x96^3 at $beta=3.55$ corresponding to a lattice spacing of 0.064 fm. This ensemble is being generated as part of the CLS 2 +1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0.039 fm to 0.086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulations. We then proceed to discuss the thermalization strategy employed for the generation of the physical quark-mass ensemble and present first results for some simple observables. Challenges encountered in the simulation are highlighted.
82 - Daniel Mohler 2017
Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory ca lculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate are already routinely performed. Progress and challenges in these calculations are highlighted.
We use a combination of quark-antiquark and $B^{(*)}K$ interpolating fields to predict the mass of two QCD bound states below the $B^*K$ threshold in the quantum channels $J^P=0^+$ and $1^+$. The mesons correspond to the b-quark cousins of the $D_{s0 }^*(2317)$ and $D_{s1}(2460)$ and have not yet been observed in experiment, even though they are expected to be found by LHCb. In addition to these predictions, we obtain excellent agreement of the remaining p-wave energy levels with the known $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons. The results from our first principles calculation are compared to previous model-based estimates. More recently the D0 collaboration claimed the existence of an exotic resonance $X(5568)$ with exotic flavor content $bar{b}sbar{d}u$. If such a state with $J^P=0^+$ exists, only the decay into $B_spi$ is open which makes a lattice search for this state much cleaner and simpler than for other exotic candidates involving heavy quarks. We conclude, however, that we do not find such a candidate in agreement with a recent LHCb result.
75 - Daniel Mohler 2015
Recent progress in lattice calculations of properties of open-charm mesons, both regular and exotic, is reviewed, with an emphasis on spectroscopy. After reviewing recent calculations of excited state energy levels I will discuss progress in extracti ng hadronic masses and widths of charmed states from Lattice QCD simulations including low-lying scattering channels directly, to determine phase shift data and bound state/ resonance properties. With regard to other properties results from recent calculations of the $DD^*pi$ and $DDrho$, $D^*D^*rho$ couplings are presented. Beyond regular mesons, searches for explicitly exotic (tetraquark) states are also reviewed.
We determine the spectrum of $B_s$ 1P states using lattice QCD. For the $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons, the results are in good agreement with the experimental values. Two further mesons are expected in the quantum channels $J^P=0^+$ and $1^+$ near the $BK$ and $B^{*}K$ thresholds. A combination of quark-antiquark and $B^{(*)}$ meson-Kaon interpolating fields are used to determine the mass of two QCD bound states below the $B^{(*)}K$ threshold, with the assumption that mixing with $B_s^{(*)}eta$ and isospin-violating decays to $B_s^{(*)}pi$ are negligible. We predict a $J^P=0^+$ bound state $B_{s0}$ with mass $m_{B_{s0}}=5.711(13)(19)$ GeV. With further assumptions motivated theoretically by the heavy quark limit, a bound state with $m_{B_{s1}}= 5.750(17)(19)$ GeV is predicted in the $J^P=1^+$ channel. The results from our first principles calculation are compared to previous model-based estimates.
We present results for the mass splittings of low-lying charmonium states from a calculation with Wilson clover valence quarks with the Fermilab interpretation on an asqtad sea. We use five lattice spacings and two values of the light sea quark mass to extrapolate our results to the physical point. Sources of systematic uncertainty in our calculation are discussed and we compare our results for the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin orbit and tensor splittings to experiment.
$D_s$ mesons are studied in three quantum channels ($J^P=0^+$, $1^+$ and $2^+$), where experiments have identified the very narrow $D_{s0}^*(2317)$, $D_{s1}(2460)$ and narrow $D_{s1}(2536)$, $D_{s2}^*(2573)$. We explore the effect of nearby $DK$ and $D^*K$ thresholds on the subthreshold states using lattice QCD. Our simulation is done on two very different ensembles of gauge configurations (2 or 2+1 dynamical quarks, Pion mass of 266 or 156 MeV, lattice size $16^3times 32$ or $32^3times 64$). In addition to $bar{q}q$ operators we also include meson-meson interpolators in the correlation functions. This clarifies the identification of the states above and below the scattering thresholds. The ensemble with $m_pi simeq 156~$MeV renders the $D_{s1}(2460)$ as a strong interaction bound state 44(10)MeV below $D^*K$ threshold, which is in agreement with the experiment. The $D_{s0}^*(2317)$ is found 37(17)MeV below $DK$ threshold, close to experiment value of 45MeV. The narrow resonances $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are also found close to the experimental masses.
The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurat ions with $m_pisimeq 156 $MeV, and the resulting $M_{D_{s0}^*}-tfrac{1}{4}(M_{D_s}+3M_{D_s^*})=266(16)$ MeV is close to the experimental value 241.5(0.8)MeV. The energy level related to the scalar meson is accompanied by additional discrete levels due to DK scattering states. The levels near threshold lead to the negative DK scattering length $a_0=-1.33(20)$ fm that indicates the presence of a state below threshold.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا