ﻻ يوجد ملخص باللغة العربية
We present results for the mass splittings of low-lying charmonium states from a calculation with Wilson clover valence quarks with the Fermilab interpretation on an asqtad sea. We use five lattice spacings and two values of the light sea quark mass to extrapolate our results to the physical point. Sources of systematic uncertainty in our calculation are discussed and we compare our results for the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin orbit and tensor splittings to experiment.
We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are genera
We present results from an ongoing study of mass splittings of the lowest lying states in the charmonium system. We use clover valence charm quarks in the Fermilab interpretation, an improved staggered (asqtad) action for sea quarks, and the one-loop
We present results on the spin and quark content of the nucleon using $N_f=2$ twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connect
We present a QCD calculation of the $u$, $d$ and $s$ scalar quark contents of nucleons based on $47$ lattice ensembles with $N_f = 2+1$ dynamical sea quarks, $5$ lattice spacings down to $0.054,text{fm}$, lattice sizes up to $6,text{fm}$ and pion mas
We present an investigation of the electromagnetic pion form factor, $F_pi(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N