ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated the infrared and Raman optical properties of BaMn2As2 in the ab-plane and along the c-axis. The most prominent features in the infrared spectra are the Eu and A2u phonon modes which show clear TO-LO splitting from the energy loss function analysis. All the phonon features we observed in infrared and Raman spectra are consistent with the calculated values. Compared to the iron-pnictide analog AFe2As2, this compound is much more two-dimensional in its electronic properties. For E || c-axis, the overall infrared reflectivity is insulating like. Within the ab-plane the material exhibits a semiconducting behavior. An energy gap 2{Delta}=48 meV can be clearly identified below room temperature.
60 - D.Wu , N. Barisic , M. Dressel 2010
The temperature and frequency dependences of the conductivity are derived from optical reflection and transmission measurements of electron doped BaFe$_2$As$_2$ crystals and films. The data is consistent with gap nodes or possibly a very small gap in the crossover region between these two possibilities. This can arise when one of the several pockets known to exist in these systems has extended s-wave gap symmetry with an anisotropic piece canceling or nearly so the isotropic part in some momentum direction. Alternatively, a node can be lifted by impurity scattering which reduces anisotropy. We find that the smaller gap on the hole pocket at the $Gamma$ point in the Brillouin zone is isotropic s-wave while the electron pocket at the $M$ point has a larger gap which is anisotropic and falls in the crossover region.
102 - D. Wu , N. Barisic , P. Kallina 2009
Infrared reflectivity measurements on 122 iron-pnictides reveal the existence of two electronic subsystems. The one gapped due to the spin-density-wave transition in the parent materials, such as EuFe$_2$As$_{2}$, is responsible for superconductivity in the doped compounds, like Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_2$As$_{2}$. Analyzing the dc resistivity and scattering rate of this contribution, a hidden $T^2$ dependence is found, indicating that superconductivity evolves out of a Fermi-liquid state. The second subsystem gives rise to incoherent background, present in all 122 compounds, which is basically temperature independent, but affected by the superconducting transition.
The temperature-dependent optical reflectivity and complex transmissivity of an epitaxially grown Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ thin film were measured and the optical conductivity and permittivity evaluated over a wide frequency range. The open ing of the superconducting gap $2Delta_0 = 3.7$ meV below $T_capprox 20$ K is {em directly} observed by a completely vanishing optical conductivity. The temperature and frequency dependent electrodynamic properties of Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ in the superconducting state agree well with the BCS predictions with no nodes in the order parameter. The spectral weight of the condensate $1.94times 10^7 {rm cm}^{-2}$ corresponds to a London penetration depth $lambda_L=3600$ AA.
193 - D. Wu , N. Barisic , N. Drichko 2009
The temperature dependence of the $ab$-plane optical reflectivity of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_2$As$_{2}$ single crystals is measured in a wide spectral range. Upon entering the superconducting regime, the ref lectivity in both compounds increases considerably at low frequency, leading to a clear gap in the optical conductivity below 100 cm$^{-1}$. From the analysis of the complex conductivity spectra we obtain the penetration depth $lambda(T)=(3500pm 350)$ AA for Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and $(3000pm 300)$ AA for Ba(Fe$_{0.95}$Ni$_{0.05})_2$As$_{2}$. The calculated superfluid density $rho_s$ of both compounds nicely fits the scaling relation $rho_s=(125pm 25)sigma_{dc}T_c$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا