ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a candidate for the most distant galaxy known to date with a photometric redshift z = 10.7 +0.6 / -0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2-sigma). This J-dropout Lyman Break Galaxy, named MACS0647- JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~8, 7, and 2, with the brighter two observed at ~26th magnitude AB (~0.15 uJy) in the WFC3/IR F160W filter (~1.4 - 1.7 um) where they are detected at >~ 12-sigma. All three images are also confidently detected at >~ 6-sigma in F140W (~1.2 - 1.6 um), dropping out of detection from 15 lower wavelength HST filters (~0.2 - 1.4 um), and lacking bright detections in Spitzer/IRAC 3.6um and 4.5um imaging (~3.2 - 5.0 um). We rule out a broad range of possible lower redshift interlopers, including some previously published as high redshift candidates. Our high redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high mass clusters to date, our discoveries of MACS0647-JD at z ~ 10.8 and MACS1149-JD1 at z ~ 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low luminosity galaxies could have reionized the universe. However given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop off in number counts at z >~ 10 suggested by field searches.
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not over-concentrated as found previously, implying a formation time in agreement with {Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2pm0.2times10^15 Modot/h70 (within r approx 3 Mpc/h70) and concentration c = 6.2 pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {Lambda}CDM simulations which span 5 <~ <c> <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7pm0.2times10^15 Modot/h70 and c_vir = 4.6pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.
We present a strong lensing mass model of Abell 1689 which resolves substructures ~25 kpc across (including about ten individual galaxy subhalos) within the central ~400 kpc diameter. We achieve this resolution by perfectly reproducing the observed ( strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47.0 +/- 1.2 (143 +3/-4 kpc) for a lensed source at zs = 2. We find a single NFW or Sersic prole yields a good fit simultaneously (with only slight tension) to both our strong lensing (SL) mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW fit, A1689 has a mass of Mvir = 2.0 +0.5/-0.3 x 10^15 Msun / h70 (M200 = 1.8 +0.4/-0.3 x 10^15 Msun / h70) within the virial radius rvir = 3.0 +/- 0.2 Mpc / h70 (r200 = 2.4 +0.1/-0.2 Mpc / h70), and a central concentration cvir = 11.5 +1.5/-1.4 (c200 = 9.2 +/- 1.2). Our SL model prefers slightly higher concentrations than previous SL models, bringing our SL+WL constraints in line with other recent derivations. Our results support those of previous studies which find A1689 has either an anomalously large concentration or significant extra mass along the line of sight (perhaps in part due to triaxiality). If clusters are generally found to have higher concentrations than realized in simulations, this could indicate they formed earlier, perhaps as a result of early dark energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا