ترغب بنشر مسار تعليمي؟ اضغط هنا

The Highest Resolution Mass Map of Galaxy Cluster Substructure To Date Without Assuming Light Traces Mass: LensPerfect Analysis of Abell 1689

90   0   0.0 ( 0 )
 نشر من قبل Dan Coe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a strong lensing mass model of Abell 1689 which resolves substructures ~25 kpc across (including about ten individual galaxy subhalos) within the central ~400 kpc diameter. We achieve this resolution by perfectly reproducing the observed (strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47.0 +/- 1.2 (143 +3/-4 kpc) for a lensed source at zs = 2. We find a single NFW or Sersic prole yields a good fit simultaneously (with only slight tension) to both our strong lensing (SL) mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW fit, A1689 has a mass of Mvir = 2.0 +0.5/-0.3 x 10^15 Msun / h70 (M200 = 1.8 +0.4/-0.3 x 10^15 Msun / h70) within the virial radius rvir = 3.0 +/- 0.2 Mpc / h70 (r200 = 2.4 +0.1/-0.2 Mpc / h70), and a central concentration cvir = 11.5 +1.5/-1.4 (c200 = 9.2 +/- 1.2). Our SL model prefers slightly higher concentrations than previous SL models, bringing our SL+WL constraints in line with other recent derivations. Our results support those of previous studies which find A1689 has either an anomalously large concentration or significant extra mass along the line of sight (perhaps in part due to triaxiality). If clusters are generally found to have higher concentrations than realized in simulations, this could indicate they formed earlier, perhaps as a result of early dark energy.



قيم البحث

اقرأ أيضاً

79 - L. Old , R. Wojtak , F. R. Pearce 2017
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses becomes ever more crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an unrelaxed state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously with commonly-used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by $sim10%$ at $10^{14}$ and $geq20%$ for $leq10^{13.5}$. The use of cluster samples with different levels of substructure can, therefore, bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.
There is a long-standing discrepancy between galaxy cluster masses determined from X-ray and gravitational lensing observations of which Abell 1689 is a well-studied example. In this work we take advantage of 180 ks of Chandra X-ray observations and a new weak gravitational study based on a Hubble Space Telescope mosaic covering the central 1.8 Mpc x 1.4 Mpc to eliminate the mass discrepancy. In contrast to earlier X-ray analyses where the very circular surface brightness has been inferred as Abell 1689 being spherically symmetric and in hydrostatic equilibrium, a hardness ratio map analysis reveals a regular and symmetric appearing main clump with a cool core plus some substructure in the North Eastern part of the cluster. The gravitational lensing mass model supports the interpretation of Abell 1689 being composed of a main clump, which is possibly a virialized cluster, plus some substructure. In order to avoid complications and mis-interpretations due to X-ray emission from the substructure, we exclude it from the mass reconstruction. Comparing X-ray and lensing mass profiles of the regular main part only, shows no significant discrepancy between the two methods and the obtained mass profiles are consistent over the full range where the mass can be reconstructed from X-rays (out to approx. 1 Mpc). The obtained cluster mass within approx. 875 kpc derived from X-rays alone is 6.4 plus/minus 2.1 x 10^14 solar masses compared to a weak lensing mass of 8.6 plus/minus 3.0 x 10^14 solar masses within the same radius.
210 - A.N. Taylor 1998
We present the first application of lens magnification to measure the absolute mass of a galaxy cluster; Abell 1689. The absolute mass of a galaxy cluster can be measured by the gravitational lens magnification of a background galaxy population by th e cluster potential. The lensing signal is complicated by the variation in number counts due to galaxy clustering and shot-noise, and by additional uncertainties in relating magnification to mass in the strong lensing regime. Clustering and shot-noise can be dealt with using maximum likelihood methods. Local approximations can then be used to estimate the mass from magnification. Alternatively if the lens is axially symmetric we show that the amplification equation can be solved nonlocally for the surface mass density and the tangential shear. In this paper we present the first maps of the total mass distribution in Abell 1689, measured from the deficit of lensed red galaxies behind the cluster. Although noisier, these reproduce the main features of mass maps made using the shear distortion of background galaxies but have the correct normalisation, finally breaking the ``sheet-mass degeneracy that has plagued lensing methods based on shear. We derive the cluster mass profile in the inner 4 (0.48 Mpc/h). These show a profile with a near isothermal surface mass density kappa = (0.5+/-0.1)(theta/1)^{-1} out to a radius of 2.4 (0.28Mpc/h), followed by a sudden drop into noise. We find that the projected mass interior to 0.24 h^{-1}$Mpc is M(<0.24 Mpc/h)=(0.50+/- 0.09) times 10^{15} Msol/h. We compare our results with masses estimated from X-ray temperatures and line-of-sight velocity dispersions, as well as weak shear and lensing arclets and find all are in fair agreement for Abell 1698.
We present wide-field Herschel/PACS observations of Abell 1689, a massive galaxy cluster at z=0.1832, from our Open Time Key Programme. We detect 39 spectroscopically confirmed 100micron-selected cluster members down to 1.5x10^10 Lsun. These galaxies are forming stars at rates in the range 1-10 Msun/yr, and appear to comprise two distinct populations: two-thirds are unremarkable blue, late-type spirals found throughout the cluster; the remainder are dusty red sequence galaxies whose star formation is heavily obscured with A(Halpha)~2 mag, and are found only in the cluster outskirts. The specific-SFRs of these dusty red galaxies are lower than the blue late-types, suggesting that the former are in the process of being quenched, perhaps via pre-processing, the unobscured star formation being terminated first. We also detect an excess of 100micron-selected galaxies extending ~6 Mpc in length along an axis that runs NE-SW through the cluster centre at >95% confidence. Qualitatively this structure is consistent with previous reports of substructure in X-ray, lensing, and near-infrared maps of this cluster, further supporting the view that this cluster is a dynamically active, merging system.
119 - Tom Broadhurst 2004
Subaru observations of A1689 (z=0.183) are used to derive an accurate, model-independent mass profile for the entire cluster, r<2 Mpc/h, by combining magnification bias and distortion measurements. The projected mass profile steepens quickly with inc reasing radius, falling away to zero at r~1.0 Mpc/h, well short of the anticipated virial radius. Our profile accurately matches onto the inner profile, r<200 kpc/h, derived from deep HST/ACS images. The combined ACS and Subaru information is well fitted by an NFW profile with virial mass, (1.93 pm 0.20)10^15 M_sun, and surprisingly high concentration, c_vir=13.7^{+1.4}_{-1.1}, significantly larger than theoretically expected (c_vir~4), corresponding to a relatively steep overall profile. A slightly better fit is achieved with a steep power-law model that has its 2D logarithmic slope -3 and core radius theta_c~1.7 (r_c~210 kpc/h), whereas an isothermal profile is strongly rejected. These results are based on a reliable sample of background galaxies selected to be redder than the cluster E/S0 sequence. By including the faint blue galaxy population a much smaller distortion signal is found, demonstrating that blue cluster members significantly dilute the true signal for r~400 kpc/h. This contamination is likely to affect most weak lensing results to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا