ﻻ يوجد ملخص باللغة العربية
We present a strong lensing mass model of Abell 1689 which resolves substructures ~25 kpc across (including about ten individual galaxy subhalos) within the central ~400 kpc diameter. We achieve this resolution by perfectly reproducing the observed (strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47.0 +/- 1.2 (143 +3/-4 kpc) for a lensed source at zs = 2. We find a single NFW or Sersic prole yields a good fit simultaneously (with only slight tension) to both our strong lensing (SL) mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW fit, A1689 has a mass of Mvir = 2.0 +0.5/-0.3 x 10^15 Msun / h70 (M200 = 1.8 +0.4/-0.3 x 10^15 Msun / h70) within the virial radius rvir = 3.0 +/- 0.2 Mpc / h70 (r200 = 2.4 +0.1/-0.2 Mpc / h70), and a central concentration cvir = 11.5 +1.5/-1.4 (c200 = 9.2 +/- 1.2). Our SL model prefers slightly higher concentrations than previous SL models, bringing our SL+WL constraints in line with other recent derivations. Our results support those of previous studies which find A1689 has either an anomalously large concentration or significant extra mass along the line of sight (perhaps in part due to triaxiality). If clusters are generally found to have higher concentrations than realized in simulations, this could indicate they formed earlier, perhaps as a result of early dark energy.
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses becomes ever
There is a long-standing discrepancy between galaxy cluster masses determined from X-ray and gravitational lensing observations of which Abell 1689 is a well-studied example. In this work we take advantage of 180 ks of Chandra X-ray observations and
We present the first application of lens magnification to measure the absolute mass of a galaxy cluster; Abell 1689. The absolute mass of a galaxy cluster can be measured by the gravitational lens magnification of a background galaxy population by th
We present wide-field Herschel/PACS observations of Abell 1689, a massive galaxy cluster at z=0.1832, from our Open Time Key Programme. We detect 39 spectroscopically confirmed 100micron-selected cluster members down to 1.5x10^10 Lsun. These galaxies
Subaru observations of A1689 (z=0.183) are used to derive an accurate, model-independent mass profile for the entire cluster, r<2 Mpc/h, by combining magnification bias and distortion measurements. The projected mass profile steepens quickly with inc