ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if t hese properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Kors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the naive field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1)_R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1)_R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b_K, b_{CK}).
In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Deltaapprox 800 to 1000 for the constrained MSSM and Deltaapprox 500 for non-universa l gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Deltaapprox 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(sqrt f) of the visible to the hidden sector SUSY breaking scales. These couplings are generated by the auxiliary component of the goldstino superfield. The model is discussed in the limit its sgoldstino component is integrated out so this superfield is realized non-linearly (hence the name of the model) while the other MSSM superfields are in their linear realization. By increasing the hidden sector scale sqrt f one obtains a continuous transition for fine-tuning values, from this model to the usual (gravity mediated) MSSM-like models.
For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in conflict with the decoupling limit of the sgoldstino (1/m_sgoldstinosim Lambda/f, f<Lambda^2).
Using the constrained superfields formalism to describe the interactions of a light goldstino to matter fields in supersymmetric models, we identify generalised, higher-order holomorphic superfield constraints that project out the superpartners and c apture the non-universal couplings of the goldstino to matter fields. These arise from microscopic theories in which heavy superpartners masses are of the order of the supersymmetry breaking scale (sqrt f). In the decoupling limit of infinite superpartners masses, these constraints reduce to the familiar, lower-order universal constraints discussed recently, that describe the universal goldstino-matter fields couplings, suppressed by inverse powers of sqrt f. We initiate the study of the couplings of the Standard Model (SM) fields to goldstino in the constrained superfields formalism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا