ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a comparison between the environments of 1) a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), 2) a complete sample of 20 radio-quiet type-2 quasars (0.3 < z < 0.41), and 3) a con trol sample of 107 quiescent early-type galaxies at 0.2 < z < 0.7 in the Extended Groth Strip (EGS). The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, PRGs are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3 sigma level. This result supports a physical origin of radio loudness, with high density gas environments favouring the transformation of AGN power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focussing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3 sigma result. 82% of the 2Jy WLRGs are in clusters, according to our definition (Bgq > 400) versus only 31% of the SLRGs.
We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Ba yesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C_T=0.95+/-0.02) and smaller escape probabilities than those of Sy1 (C_T=0.5+/-0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.
We report far-infrared (FIR) imaging of the Seyfert 2 galaxy NGC 3081 in the range 70-500 micron, obtained with an unprecedented angular resolution, using the Herschel Space Observatory instruments PACS and SPIRE. The 11 kpc (~70 arcsec) diameter sta r-forming ring of the galaxy appears resolved up to 250 micron. We extracted infrared (1.6-500 micron) nuclear fluxes, that is active nucleus-dominated fluxes, and fitted them with clumpy torus models, which successfully reproduce the FIR emission with small torus sizes. Adding the FIR data to the near- and mid-infrared spectral energy distribution (SED) results in a torus radial extent of Ro=4(+2/-1) pc, as well as in a flat radial distribution of the clouds (i.e. the q parameter). At wavelengths beyond 200 micron, cold dust emission at T=28+/-1 K from the circumnuclear star-forming ring of 2.3 kpc (~15 arcsec) in diameter starts making a contribution to the nuclear emission. The dust in the outer parts of the galaxy is heated by the interstellar radiation field (19+/-3 K).
We present subarcsecond resolution mid-infrared (mid-IR) photometry in the wavelength range from 8 to 20 micron of eighteen Seyfert galaxies, reporting high spatial resolution nuclear fluxes for the entire sample. We construct spectral energy distrib utions (SEDs) that the AGN dominates adding near-IR measurements from the literature at similar angular resolution. The IR SEDs of intermediate-type Seyferts are flatter and present higher 10 to 18 micron ratios than those of Seyfert 2. We fit the individual SEDs with clumpy torus models using the in-house-developed BayesClumpy tool. The models reproduce the high spatial resolution measurements. Regardless of the Seyfert type, even with high spatial resolution data, near- to mid-IR SED fitting poorly constrains the radial extent of the torus. For the Seyfert 2, we find that edge-on geometries are more probable than face-on views, with a number of clouds along equatorial rays of N = 5-15. The 10 micron silicate feature is generally modeled in shallow absorption. For the intermediate-type Seyferts, N and the inclination angle of the torus are lower than those of the Seyfert 2 nuclei, with the silicate feature appearing in weak emission or absent. The columns of material responsible for the X-ray absorption are larger than those inferred from the model fits for most of the galaxies, which is consistent with X-ray absorbing gas being located within the dust sublimation radius whereas the mid-IR flux arises from an area farther from the accretion disc. The fits yield both the bolometric luminosity of the intrinsic AGN and the torus integrated luminosity, from which we derive the reprocessing efficiency of the torus. In the models, the outer radial extent of the torus scales with the AGN luminosity, and we find the tori to be confined to scales less than 5 pc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا