ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the AGN Unification Model in the Infrared

223   0   0.0 ( 0 )
 نشر من قبل Cristina Ramos Almeida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C_T=0.95+/-0.02) and smaller escape probabilities than those of Sy1 (C_T=0.5+/-0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.

قيم البحث

اقرأ أيضاً

The motivation of the unified model is to explain the main properties of the large zoo of active galactic nuclei with a single physical object. The discovery of broad permitted lines in the polarized spectrum of type 2 Seyfert galaxies in the mid 80s led to the idea of an obscuring torus, whose orientation with respect to our line of sight was the reason of the different optical spectra. However, after many years of observations with different techniques, including IR and mm interferometry, the resulting properties of the observed dust structures differ from the torus model that would be needed to explain the type 1 vs type 2 dichotomy. Moreover, in the last years, multi-frequency monitoring of active galactic nuclei has shown an increasing number of transitions from one type to the other one, which cannot be explained in terms of the simple orientation of the dusty structure surrounding the active galactic nucleus (AGN). The interrelations between the AGN and the host galaxy, as also shown in the Magorrian relation, suggest that the evolution of the host galaxy may also have an important role in the observed manifestation of the nuclei. As an example, the observed delay between the maximum star formation activity and the onset of the AGN activity, and the higher occurrence of type 2 nuclei in star forming galaxies, have suggested the possible evolutionary path from, e.g., HII $rightarrow$ AGN2 $rightarrow$ AGN1. In the next years the models of unification need to also consider this observational framework and not only simple orientation effects.
We present the distributions of geometrical covering factors of active galactic nuclei (AGNs) dusty tori (f2) using an X-ray selected complete sample of 227 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The AGN have z from 0.05 to 1.7, 2-10 keV luminosities between 10^42 and 10^46 erg/s and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS and the Wide-field Infrared Survey Explorer in a previous work we determined the rest-frame 1-20 microns continuum emission from the torus which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGN are intrinsically different, with type 2 AGN having on average tori with higher f2 than type 1 AGN. Nevertheless, ~20 per cent of type 1 AGN have tori with large covering factors while ~23-28 per cent of type 2 AGN have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGN the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction an X-ray absorption takes place in material that shares an overall geometry and most likely belongs to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ~1-20 microns nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.
We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate Active Galactic Nuclei (AGN) selected in the mid-infrared. This survey selects both normal and obscured AGN closely matched in luminosity across a w ide range, from Seyfert galaxies with bolometric luminosities L_bol~10^10L_sun, to highly luminous quasars (L_bol~10^14L_sun), and with redshifts from 0-4.3. Samples of candidate AGN were selected through mid-infrared color cuts at several different 24 micron flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGN and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type-1 AGN with blue continua, 294 (44%) are type-2 objects with extinctions A_V>~5 towards their AGN, 96 (14%) are AGN with lower extinctions (A_V~1) and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. 50% of the survey objects have L_bol >10^12L_sun, in the quasar regime. We present composite spectra for type-2 quasars and for objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared - emission-line luminosity correlation and present the results of cross-correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) there exist mid-infrared selected AGN candidates which lack AGN signatures in their optical spectra, but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGN often differ.
116 - S. Mark Ammons 2011
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected AGN hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with HST/ACS/NICMOS and VLT/ISAAC imaging. We also present spatially-resolved NUV - R color gradients for a subsampl e of AGN hosts imaged by HST/WFC3. Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z ~ 1 due to color contamination from point-source AGN emission. We use a cloning simulation to develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond ~6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 +/- 0.16 magnitudes bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond ~6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/IR sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than ~0.5 magnitudes for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ~1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGN at z ~ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.
109 - E. Valiante , D. Lutz , E. Sturm 2009
Empirical backward galaxy evolution models for infrared bright galaxies are constrained using multi-band infrared surveys. We developed a new Monte-Carlo algorithm for this task, implementing luminosity dependent distribution functions for the galaxi es infrared spectral energy distributions (SEDs) and for the AGN contribution, allowing for evolution of these quantities. The adopted SEDs take into account the contributions of both starbursts and AGN to the infrared emission, for the first time in a coherent treatment rather than invoking separate AGN and star-forming populations. In the first part of the paper we consider the quantification of the AGN contribution for local universe galaxies, as a function of total infrared luminosity. It is made using a large sample of LIRGs and ULIRGs for which mid-infrared spectra are available in the Spitzer archive. In the second part we present the model. Our best-fit model adopts very strong luminosity evolution, $L=L_0(1+z)^{3.4}$, up to $z=2.3$, and density evolution, $rho=rho_0(1+z)^2$, up to $z=1$, for the population of infrared galaxies. At higher $z$, the evolution rates drop as $(1+z)^{-1}$ and $(1+z)^{-1.5}$ respectively. To reproduce mid-infrared to submillimeter number counts and redshift distributions, it is necessary to introduce both an evolution in the AGN contribution and an evolution in the luminosity-temperature relation. Our models are in plausible agreement with current photometry-based estimates of the typical AGN contribution as a function of mid-infrared flux, and well placed to be compared to upcoming Spitzer spectroscopic results. As an example of future applications, we use our best-fitting model to make predictions for surveys with Herschel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا