ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a detailed investigation on the lower critical field $H_{c1}$ of the superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (FeAs-122) single crystals. A pronounced kink is observed on the $H_{c1}(T)$ curve, which is attributed to the existence of two superconducting gaps. By fitting the data $H_{c1}(T)$ to the two-gap BCS model in full temperature region, a small gap of $Delta_a(0)=2.0pm 0.3$ meV and a large gap of $Delta_b(0)=8.9pm 0.4$ meV are obtained. The in-plane penetration depth $lambda_{ab}(0)$ is estimated to be 105 nm corresponding to a rather large superfluid density, which points to the breakdown of the Uemura plot in FeAs-122 superconductors.
We present the first experimental results of the lower critical field $H_{c1}$ of the newly discovered F-doped superconductor LaO$_{0.9}$F$_{0.1}$FeAs (F-LaOFeAs) by global and local magnetization measurements. It is found that $H_{c1}$ showed an cle ar linear-$T$ dependence down to a temperature of 2 K, indicative of an unconventional pairing symmetry with a nodal gap function. Based on the d-wave model, we estimated a maximum gap value $Delta_0=4.0 pm 0.6$ meV, in consistent with the recent specific heat and point-contact tunneling measurements. Taking the demagnetization factor into account, the absolute value of $H_{c1}(0)$ is determined to be about 54 Oe, manifesting a low superfluid density for LaO$_{0.9}$F$_{0.1}$FeAs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا