ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) We discuss the Galactic foreground emission between 20 and 100GHz based on observations by Planck/WMAP. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison wi th RRL templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Halpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (~30%) of Halpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak ranging from below 20GHz to more than 50GHz. There is a strong tendency for the spinning dust component near many prominent HII regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photodissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the commander solution finds more anomalous microwave emission than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys (5-20GHz), will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck/WMAP data to make the highest S/N ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure...
We present an analysis of the diffuse emission at 5 GHz in the first quadrant of the Galactic plane using two months of preliminary intensity data taken with the C-Band All Sky Survey (C-BASS) northern instrument at the Owens Valley Radio Observatory , California. Combining C-BASS maps with ancillary data to make temperature-temperature plots we find synchrotron spectral indices of $beta = -2.65 pm 0.05$ between 0.408 GHz and 5 GHz and $ beta = -2.72 pm 0.09$ between 1.420 GHz and 5 GHz for $-10^{circ} < |b| < -4^{circ}$, $20^{circ} < l < 40^{circ}$. Through the subtraction of a radio recombination line (RRL) free-free template we determine the synchrotron spectral index in the Galactic plane ($ |b| < 4^{circ}$) to be $beta = -2.56 pm 0.07$ between 0.408 GHz and 5 GHz, with a contribution of $53 pm 8$ per cent from free-free emission at 5,GHz. These results are consistent with previous low frequency measurements in the Galactic plane. By including C-BASS data in spectral fits we demonstrate the presence of anomalous microwave emission (AME) associated with the HII complexes W43, W44 and W47 near 30 GHz, at 4.4 sigma, 3.1 sigma and 2.5 sigma respectively. The CORNISH VLA 5 GHz source catalogue rules out the possibility that the excess emission detected around 30;GHz may be due to ultra-compact HII regions. Diffuse AME was also identified at a 4 sigma level within $30^{circ} < l < 40^{circ}$, $-2^{circ} < b < 2^{circ}$ between 5 GHz and 22.8 GHz.
Observations of the properties of dense molecular clouds are critical in understanding the process of star-formation. One of the most important, but least understood, is the role of the magnetic fields. We discuss the possibility of using high-resolu tion, high-sensitivity radio observations with the SKA to measure for the first time the in-situ synchrotron radiation from these molecular clouds. If the cosmic-ray (CR) particles penetrate clouds as expected, then we can measure the B-field strength directly using radio data. So far, this signature has never been detected from the collapsing clouds themselves and would be a unique probe of the magnetic field. Dense cores are typically ~0.05 pc in size, corresponding to ~arcsec at ~kpc distances, and flux density estimates are ~mJy at 1 GHz. The SKA should be able to readily detect directly, for the first time, along lines-of-sight that are not contaminated by thermal emission or complex foreground/background synchrotron emission. Polarised synchrotron may also be detectable providing additional information about the regular/turbulent fields.
In this chapter, we will outline the scientific motivation for studying Anomalous Microwave Emission (AME) with the SKA. AME is thought to be due to electric dipole radiation from small spinning dust grains, although thermal fluctuations of magnetic dust grains may also contribute. Studies of this mysterious component would shed light on the emission mechanism, which then opens up a new window onto the interstellar medium (ISM). AME is emitted mostly in the frequency range $sim 10$--100,GHz, and thus the SKA has the potential of measuring the low frequency side of the AME spectrum, particularly in band 5. Science targets include dense molecular clouds in the Milky Way, as well as extragalactic sources. We also discuss the possibility of detecting rotational line emission from Poly-cyclic Aromatic Hydrocarbons (PAHs), which could be the main carriers of AME. Detecting PAH lines of a given spacing would allow for a definitive identification of specific PAH species.
92 - Clive Dickinson 2014
BINGO is a novel single-dish total-power telescope that will map the redshifted HI sky in a ~15 degree strip, at frequencies of 960-1260 MHz (z=0.12-0.48). BINGO will have the sensitivity to accurately measure the HI power spectrum and to detect Bary on Acoustic Oscillations (BAOs) for the first time at radio wavelengths. This will provide complementary cosmological information to existing surveys and will measure the acoustic scale to ~2 % precision. We provide an update on BINGO including an improved two-mirror optical configuration, final site selection and foreground removal simulations.
The detection of the New Moon at sunset is of importance to communities based on the lunar calendar. This is traditionally undertaken with visual observations. We propose a radio method which allows a higher visibility of the Moon relative to the Sun and consequently gives us the ability to detect the Moon much closer to the Sun than is the case of visual observation. We first compare the relative brightness of the Moon and Sun over a range of possible frequencies and find the range 5--100,GHz to be suitable. The next consideration is the atmospheric absorption/emission due to water vapour and oxygen as a function of frequency. This is particularly important since the relevant observations are near the horizon. We show that a frequency of $sim 10$ GHz is optimal for this programme. We have designed and constructed a telescope with a FWHM resolution of 0$^circ{}!!$.6 and low sidelobes to demonstrate the potential of this approach. At the time of the 21 May 2012 New Moon the Sun/Moon brightness temperature ratio was $72.7 pm 2.2$ in agreement with predictions from the literature when combined with the observed sunspot numbers for the day. The Moon would have been readily detectable at $sim 2^{circ}$ from the Sun. Our observations at 16,hr,36,min UT indicated that the Moon would have been at closest approach to the Sun 16,hr,25,min earlier; this was the annular solar eclipse of 00,hr,00,min,UT on 21 May 2012.
Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1deg-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5sigma) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact HII regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the submillimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14-20 K and an average emissivity index of +1.8, while the non-AME regions are typically warmer, at 20-27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. The emerging picture is that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium phase (Abridged).
101 - N. Macellari 2011
We compute the cross correlation of the intensity and polarisation from the 5-year WMAP data in different sky-regions with respect to template maps for synchrotron, dust, and free-free emission. We derive the frequency dependence and polarisation fra ction for all three components in 48 different sky regions of HEALPix (Nside=2) pixelisation. The anomalous emission associated with dust is clearly detected in intensity over the entire sky at the K (23 GHz) and Ka (33 GHz) WMAP bands, and is found to be the dominant foreground at low Galactic latitude, between b=-40 and b=+10. The synchrotron spectral index obtained from the K and Ka WMAP bands from an all-sky analysis is -3.32pm 0.12 for intensity and -3.01pm0.03 for the polarised intensity. The polarisation fraction of the synchrotron is constant in frequency and increases with latitude from ~5% near the Galactic plane up to ~40% in some regions at high latitude; the average value for |b|<20 is 8.6pm1.7 (stat) pm0.5 (sys) % while for |b|>20 it is 19.3pm0.8 (stat) pm 0.5 (sys) %. Anomalous dust and free-free emission appear to be relatively unpolarised...[Abridged]...the average polarisation fraction of dust-correlated emission at K-band is 3.2pm0.9 (stat) pm 1.5 (sys) %, or less than 5% at 95% confidence. When comparing real data with simulations, 8 regions show a detected polarisation above the 99th percentile of the distribution from simulations with no input foreground polarisation, 6 of which are detected at above 2sigma and display polarisation fractions between 2.6% and 7.2%, except for one anomalous region, which has 32pm12%. The dust polarisation values are consistent with the expectation from spinning-dust emission, but polarised dust emission from magnetic-dipole radiation cannot be ruled out. Free-free emission was found to be unpolarised with an upper limit of 3.4% at 95% confidence.
Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1 sigma for Perseus and 8.4 sigma for Rho Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In Rho Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright HII regions that show evidence for AME, and are well fitted by spinning dust models.
71 - Clive Dickinson 2010
Polarized foregrounds are going to be a serious challenge for detecting CMB cosmological B-modes. Both diffuse Galactic emission and extragalactic sources contribute significantly to the power spectrum on large angular scales. At low frequencies, Gal actic synchrotron emission will dominate with fractional polarization $sim 20-40%$ at high latitudes while radio sources can contribute significantly even on large ($sim 1^{circ}$) angular scales. Nevertheless, simulations suggest that a detection at the level of $r=0.001$ might be achievable if the foregrounds are not too complex.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا