ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds

100   0   0.0 ( 0 )
 نشر من قبل Clive Dickinson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1deg-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5sigma) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact HII regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the submillimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14-20 K and an average emissivity index of +1.8, while the non-AME regions are typically warmer, at 20-27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. The emerging picture is that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium phase (Abridged).



قيم البحث

اقرأ أيضاً

The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions we re compiled to determine the emission mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant.In all cases, the low-frequency emission is from synchrotron radiation. A single power law, as predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, $S_ upropto u^{-alpha}$, with the spectral index, alpha, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.
Planck data when combined with ancillary data provide a unique opportunity to separate the diffuse emission components of the inner Galaxy. The purpose of the paper is to elucidate the morphology of the various emission components in the strong star- formation region lying inside the solar radius and to clarify the relationship between the various components. The region of the Galactic plane covered is l=300-0-60deg where star-formation is highest and the emission is strong enough to make meaningful component separation. The latitude widths in this longitude range lie between 1deg and 2deg, which correspond to FWHM z-widths of 100-200pc at a typical distance of 6kpc. The four emission components studied here are synchrotron, free-free, anomalous microwave emission (AME), and thermal (vibrational) dust emission. These components are identified by constructing spectral energy distributions (SEDs) at positions along the Galactic plane using the wide frequency coverage of Planck (28.4-857GHz) in combination with low-frequency radio data at 0.408-2.3GHz plus WMAP data at 23-94GHz, along with far-infrared (FIR) data from DIRBE and IRAS. The free-free component is determined from radio recombination line (RRL) data. AME is found to be comparable in brightness to the free-free emission on the Galactic plane in the frequency range 20-40GHz with a width in latitude similar to that of the thermal dust; it comprises 45+/-1% of the total 28.4GHz emission in the longitude range l=300-0-60deg. The free-free component is the narrowest, reflecting the fact that it is produced by current star-formation as traced by the narrow distribution of OB stars. It is the dominant emission on the plane between 60 and 100GHz. RRLs from this ionized gas are used to assess its distance, leading to a free-free z-width of FWHM ~100pc...(abridged)
We use Planck HFI data combined with ancillary radio data to study the emissivity index of the interstellar dust emission in the frequency range 10 - 353 GHz, or 3 - 0.8 mm, in the Galactic plane. We analyse the region l=20 degr - 44 degr and |b| leq 4 degr where the free-free emission can be estimated from radio recombination line data. We fit the spectra at each sky pixel with a modified blackbody model and two spectral indices, beta_mm and beta_FIR, below and above 353 GHz respectively. We find that beta_mm is smaller than beta_FIR and we detect a correlation between this low frequency power-law index and the dust optical depth at 353 GHz, tau_353. The opacity spectral index beta_mm increases from about 1.54 in the more diffuse regions of the Galactic disk, |b| = 3 degr - 4 degr and tau_353 ~ 5 x 10^{-5}, to about 1.66 in the densest regions with an optical depth of more than one order of magnitude higher. We associate this correlation with an evolution of the dust emissivity related to the fraction of molecular gas along the line of sight. This translates into beta_mm ~ 1.54 for a medium that is mostly atomic and beta_mm ~ 1.66 when the medium is dominated by molecular gas. We find that both the Two-Level System model and the emission by ferromagnetic particles can explain the results. The results improve our understanding of the physics of interstellar dust and lead towards a complete model of the dust spectrum of the Milky Way from far-infrared to millimetre wavelengths.
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emi ssion, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray haze or bubbles, indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.
This paper presents the large-scale polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse large-scale maps of dust polarization fraction and polarization direction, while taking account of noise bias and possible systematic effects. We find that the maximum observed dust polarization fraction is high (pmax > 18%), in particular in some of the intermediate dust column density (AV < 1mag) regions. There is a systematic decrease in the dust polarization fraction with increasing dust column density, and we interpret the features of this correlation in light of both radiative grain alignment predictions and fluctuations in the magnetic field orientation. We also characterize the spatial structure of the polarization angle using the angle dispersion function and find that, in nearby fields at intermediate latitudes, the polarization angle is ordered over extended areas that are separated by filamentary structures, which appear as interfaces where the magnetic field sky projection rotates abruptly without apparent variations in the dust column density. The polarization fraction is found to be anti-correlated with the dispersion of the polarization angle, implying that the variations are likely due to fluctuations in the 3D magnetic field orientation along the line of sight sampling the diffuse interstellar medium.We also compare the dust emission with the polarized synchrotron emission measured with the Planck LFI, with low-frequency radio data, and with Faraday rotation measurements of extragalactic sources. The two polarized components are globally similar in structure along the plane and notably in the Fan and North Polar Spur regions. A detailed comparison of these three tracers shows, however, that dust and cosmic rays generally sample different parts of the line of sight and confirms that much of the variation observed in the Planck data is due to the 3D structure of the magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا