ترغب بنشر مسار تعليمي؟ اضغط هنا

The energy range encompassing the ankle of the cosmic ray energy spectrum probably marks the exhaustion of the accelerating sources in our Galaxy, as well as the end of the Galactic confinement. Furthermore, this is the region where the extragalactic flux penetrates the interstellar medium and starts, progressively, to be dominant. Although at lower energies it is likely that an average population of supernova remnants can be defined to account for most of the cosmic ray flux, this assumption is increasingly difficult to maintain as higher energies are considered. One possibility is that supernovas are still a main contributor along the first branch of the ankle region, but that the acceleration is now coming from well localized regions with a characteristic interstellar medium, or a sub-population of supernovas exploding in a peculiar circumstellar environment. These possibilities are analyzed in the present work using a two-dimensional diffusion model for cosmic ray propagation. Special emphasis is given to the inner 200 pc of our Galaxy and to the spiral arm structure in relation with the Sun position inside the disk.
The energy region spanning from $sim 10^{17}$ to $lesssim 10^{19}$ eV is critical for understanding both, the Galactic and the extragalactic cosmic ray fluxes. This is the region where the propagation regime of nuclei inside the Galactic magnetic env ironment changes from diffusive to ballistic, as well as the region where, very likely, the most powerful Galactic accelerators reach their maximum output energies. In this work, a diffusion Galactic model is used to analyze the end of the Galactic cosmic ray spectrum and its mixing with the extragalactic cosmic ray flux. In particular, we study the conditions that must be met, from the spectral and composition points of view, by the Galactic and the extragalactic fluxes in order to reproduce simultaneously the total spectrum and elongation rate measured over the transition region by HiRes and Auger. Our analysis favors a mixed extragalactic spectrum in combination with a Galactic spectrum enhanced by additional high energy components, i.e., extending beyond the maximum energies expected from regular supernova remnants. The two additional components have mixed composition, with the lowest energy one heavier than the highest energy one. The potential impact on the astrophysical analysis of the assumed hadronic interaction model is also assessed in detail.
We use a diffusive model for the propagation of Galactic cosmic rays to estimate the charged pion production in interactions with protons of the interstellar medium. Cosmic ray nuclei from proton to iron are considered and the corresponding contribut ion to the neutrino secondary flux produced as a result of spallation is also estimated.
We use a diffusion galactic model to analyze the end of the Galactic cosmic ray spectrum and its mixing with the extragalactic cosmic ray flux. We analyze the transition between Galactic and extragalactic components using two different extragalactic models. We compare the sum of the diffusive galactic spectrum and extragalactic spectrum with the available experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا