ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental constraints on the astrophysical interpretation of the cosmic ray Galactic-extragalactic transition region

68   0   0.0 ( 0 )
 نشر من قبل Cinzia De Donato
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy region spanning from $sim 10^{17}$ to $lesssim 10^{19}$ eV is critical for understanding both, the Galactic and the extragalactic cosmic ray fluxes. This is the region where the propagation regime of nuclei inside the Galactic magnetic environment changes from diffusive to ballistic, as well as the region where, very likely, the most powerful Galactic accelerators reach their maximum output energies. In this work, a diffusion Galactic model is used to analyze the end of the Galactic cosmic ray spectrum and its mixing with the extragalactic cosmic ray flux. In particular, we study the conditions that must be met, from the spectral and composition points of view, by the Galactic and the extragalactic fluxes in order to reproduce simultaneously the total spectrum and elongation rate measured over the transition region by HiRes and Auger. Our analysis favors a mixed extragalactic spectrum in combination with a Galactic spectrum enhanced by additional high energy components, i.e., extending beyond the maximum energies expected from regular supernova remnants. The two additional components have mixed composition, with the lowest energy one heavier than the highest energy one. The potential impact on the astrophysical analysis of the assumed hadronic interaction model is also assessed in detail.

قيم البحث

اقرأ أيضاً

71 - R. Aloisio 2007
We discuss the signatures of the transition from galactic to extragalactic cosmic rays in different scenarios, giving most attention to the dip scenario. The dip is a feature in the diffuse spectrum of ultra-high energy (UHE) protons in the energy ra nge $1times 10^{18} - 4times 10^{19}$ eV, which is caused by electron-positron pair production on the cosmic microwave background (CMB) radiation. The dip scenario provides a simple physical description of the transition from galactic to extragalactic cosmic rays. Here we summarize the signatures of the pair production dip model for the transition, most notably the spectrum, the anisotropy and the chemical composition. The main focus of our work is however on the description of the features that arise in the elongation rate and in the distribution of the depths of shower maximum $X_{rm max}$ in the dip scenario. We find that the curve for $X_{max}(E)$ shows a sharp increase with energy, which reflects a sharp transition from an iron dominated flux at low energies to a proton dominated flux at $Esim 10^{18}$ eV. We also discuss in detail the shape of the $X_{max}$ distributions for cosmic rays of given energy and demonstrate that this represents a powerful tool to discriminate between the dip scenario and other possible models of the transition.
96 - V. Berezinsky 2007
The transition from galactic to extragalactic cosmic rays is discussed. One of critical indications for transition is given by the Standard Model of Galactic cosmic rays, according to which the maximum energy of acceleration for iron nuclei is of ord er of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. At $E > E_{rm Fe}^{rm max}$ the spectrum is predicted to be very steep and thus the Standard Model favours the transition at energy not much higher than $E_{rm Fe}^{rm max}$. As observations are concerned there are two signatures of transition: change of energy spectra and elongation rate (depth of shower maximum in the atmosphere $X_{rm max}$ as function of energy). Three models of transition are discussed: dip-based model, mixed composition model and ankle model. In the latter model the transition occurs at the observed spectral feature, ankle, which starts at $E_a approx 1times 10^{19}$ eV and is characterised by change of mass compostion from galactic iron to extragalactic protons. In the dip model the transition occures at the second knee observed at energy $(4 -8)times 10^{17}$ eV and is characterised by change of mass composition from galactic iron to extragalactic protons. The mixed composition model describes transition at $E sim 3times 10^{18}$ eV with mass composition changing from galactic iron to extragactic mixed composition of different nuclei. These models are confronted with observational data on spectra and elongation rates from different experiments, including Auger.
The study of the transition between galactic and extragalactic cosmic rays can shed more light on the end of the Galactic cosmic rays spectrum and the beginning of the extragalactic one. Three models of transition are discussed: ankle, dip and mixed composition models. All these models describe the transition as an intersection of a steep galactic component with a flat extragalactic one. Severe bounds on these models are provided by the Standard Model of Galactic Cosmic Rays according to which the maximum acceleration energy for Iron nuclei is of the order of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. In the ankle model the transition is assumed at the ankle, a flat feature in the all particle spectrum which observationally starts at energy $E_a sim (3 - 4)times 10^{18}$ eV. This model needs a new high energy galactic component with maximum energy about two orders of magnitude above that of the Standard Model. The origin of such component is discussed. As observations are concerned there are two signatures of the transition: change of energy spectra and mass composition. In all models a heavy galactic component is changed at the transition to a lighter or proton component.
The existence of the spectral break around $sim 3 times 10^{15}$ eV in the cosmic ray spectrum (referred to as the `knee) is one of the biggest questions in cosmic ray astrophysics. At the same time, the origin of cosmic rays above the knee energies (between 10$^{15}$ and 10$^{18}$ eV) is also still unsettled. In this paper, we investigate how the hypothetical extragalactic CRs after modulated by the galactic wind contribute to the knee in the CR spectrum. We numerically calculate the modulated energy spectrum of the hypothetical cosmic rays coming into the galaxy from just outside of the ``galactic sphere where the galactic wind terminates. We show that the observed knee structure is reproduced well by a superposition of the modulated component and the galactic cosmic rays originating in supernova remnants.
We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into accoun t the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or gamma-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا