ترغب بنشر مسار تعليمي؟ اضغط هنا

128 - Chunhua Qi 2014
We present high angular resolution Submillimeter Array observations ofthe outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.5, or ~3000 km at the comet distance. The observations resulted in detect ions of the rotational lines CO 3-2, HCN 4-3, H$^{13}$CN 4-3, CS 7-6, H$_2$CO 3$_{1,2}$-2$_{1,1}$, H$_2$S 2$_{2,0}$-2$_{1,1}$, and multiple CH$_3$OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7$pm$0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (~1 km s$^{-1}$ FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s$^{-1}$ FWHM) with the line center red-shifted by 0.1-0.2 km s$^{-1}$ (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66 to 30 degrees within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN <7, while in the narrow-line component, CO/HCN = 40$pm$5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.
Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of snow lines of abundant volatiles. We present chemical imaging of the CO snow line in the disk aroun d TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of N2H+, a reactive ion present in large abundance only where CO is frozen out. The N2H+ emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~ 30 AU helps to assess models of the formation dynamics of the Solar System, when combined with measurements of the bulk composition of planets and comets.
We report the first detection of c-C3H2 in a circumstellar disk. The c-C3H2 J=6-5 line (217.882 GHz) is detected and imaged through Atacama Large Millimeter Array (ALMA) Science Verification observations toward the disk around the Herbig Ae star HD 1 63296 at 0.8 resolution. The emission is consistent with that arising from a Keplerian rotating disk. Two additional c-C3H2 transitions are also tentatively detected, bolstering the identification of this species, but with insufficient signal-to-noise ratio to constrain the spatial distribution. Using a previously developed model for the physical structure of this disk, we fit a radial power-law distribution model to the c-C3H2 6-5 emission and find that c-C3H2 is present in a ring structure from an inner radius of about 30 AU to an outer radius of about 165 AU. The column density is estimated to be 1e12-1e13 cm-2. The clear detection and intriguing ring structure suggest that c-C3H2 has the potential to become a useful probe of radiation penetration in disks.
We present Submillimeter Array observations of H2CO and N2H+ emission in the disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296 at 2-6 resolution and discuss the distribution of these species with respect to CO freeze-out. The H2CO and N2H+ emission toward HD 163296 does not peak at the continuum emission center that marks the stellar position but is instead significantly offset. Using a previously developed model for the physical structure of this disk, we show that the H2CO observations are reproduced if H2CO is present predominantly in the cold outer disk regions. A model where H2CO is present only beyond the CO snow line (estimated at a radius of 160 AU) matches the observations well. We also show that the average H2CO excitation temperature, calculated from two transitions of H2CO observed in these two disks and a larger sample of disks around T Tauri stars in the DISCS (the Disk Imaging Survey of Chemistry with SMA) program, is consistent with the CO freeze-out temperature of 20 K. In addition, we show that N2H+ and H2CO line fluxes in disks are strongly correlated, indicative of co-formation of these species across the sample. Taken together, these results imply that H2CO and N2H+ are generally present in disks only at low temperatures where CO depletes onto grains, consistent with fast destruction of N2H+ by gas-phase CO, and in situ formation of H2CO through hydrogenation of CO ice. In this scenario H2CO, CH3OH and N2H+ emission in disks should appear as rings with the inner edge at the CO midplane snow line. This prediction can be tested directly using observations from ALMA with higher resolution and better sensitivity.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.
48 - C. Qi , D.J. Wilner , Y. Aikawa 2008
We present Submillimeter Array (SMA) observations of several deuterated species in the disk around the classical T Tauri star TW Hydrae at arcsecond scales, including detections of the DCN J=3-2 and DCO+ J=3-2 lines, and upper limits to the HDO 3(1,2 )-2(2,1), ortho-H2D+ 1(1,0)-1(1,1) and para-D2H+ 1(1,0)-1(0,1) transitions. We also present observations of the HCN J=3-2, HCO+ J=3-2 and H13CO+ J=4-3 lines for comparison with their deuterated isotopologues. We constrain the radial and vertical distributions of various species in the disk by fitting the data using a model where the molecular emission from an irradiated accretion disk is sampled with a 2D Monte Carlo radiative transfer code. We find that the distribution of DCO+ differs markedly from that of HCO+. The D/H ratios inferred change by at least one order of magnitude (0.01 to 0.1) for radii <30 AU to >70 AU and there is a rapid falloff of the abundance of DCO+ at radii larger than 90 AU. Using a simple analytical chemical model, we constrain the degree of ionization, x(e-)=n(e-)/n(H2), to be ~10^-7 in the disk layer(s) where these molecules are present. Provided the distribution of DCN follows that of HCN, the ratio of DCN to HCN is determined to be 1.7pm0.5 times 10^-2; however, this ratio is very sensitive to the poorly constrained vertical distribution of HCN. The resolved radial distribution of DCO+ indicates that {it in situ} deuterium fractionation remains active within the TW Hydrae disk and must be considered in the molecular evolution of circumstellar accretion disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا