ترغب بنشر مسار تعليمي؟ اضغط هنا

As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we ex amine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $Omega_{rm m}$, $Omega_{Lambda}$, $sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through structure, are in agreement with the concordance cosmology with the current best fit giving $1 - Omega_{rm m} = Omega_{rm Lambda} = 0.84^{+0.16}_{-0.17}$. To obtain a more accurate constraint competitive with recently measured cosmological parameters from Planck and WMAP requires a measured merger accuracy of $delta f_{rm m} sim 0.01$, implying surveys with an accurately measured merger history over 2 - 20 deg$^{2}$, which will be feasible with the next generation of imaging and spectroscopic surveys such as Euclid and LSST.
This paper presents a review of the topic of galaxy formation and evolution, focusing on basic features of galaxies, and how these observables reveal how galaxies and their stars assemble over cosmic time. I give an overview of the observed propertie s of galaxies in the nearby universe and for those at higher redshifts up to z~10. This includes a discussion of the major processes in which galaxies assemble and how we can now observe these - including the merger history of galaxies, the gas accretion and star formation rates. I show that for the most massive galaxies mergers and accretion are about equally important in the galaxy formation process between z = 1-3, while this likely differs for lower mass systems. I also discuss the mass differential evolution for galaxies, as well as how environment can affect galaxy evolution, although mass is the primary criteria for driving evolution. I also discuss how we are beginning to measure the dark matter content of galaxies at different epochs as measured through kinematics and clustering. Finally, I review how observables of galaxies, and the observed galaxy formation process, compares with predictions from simulations of galaxy formation, finding significant discrepancies in the abundances of massive galaxies and the merger history. I conclude by examining prospects for the future using JWST, Euclid, SKA, and the ELTs in addressing outstanding issues.
We present in this paper an analysis of the faint and red near-infrared selected galaxy population found in near-infrared imaging from the Palomar Observatory Wide-Field Infrared Survey. This survey covers 1.53 deg^2 to 5-sigma detection limits of K_ vega = 20.5-21 and J_vega = 22.5, and overlaps with the DEEP2 spectroscopic redshift survey. We discuss the details of this NIR survey, including our J and K band counts. We show that the K-band galaxy population has a redshift distribution that varies with K-magnitude, with most K < 17 galaxies at z < 1.5 and a significant fraction (38.3+/-0.3%) of K > 19 systems at z > 1.5. We further investigate the stellar masses and morphological properties of K-selected galaxies, particularly extremely red objects, as defined by (R-K) > 5.3 and (I-K) > 4. One of our conclusions is that the ERO selection is a good method for picking out galaxies at z > 1.2, and within our magnitude limits, the most massive galaxies at these redshifts. The ERO limit finds 75% of all M_* > 10^{11} M_0 galaxies at z ~ 1.5 down to K_vega = 19.7. We further find that the morphological break-down of K < 19.7 EROs is dominated by early-types (57+/-3%) and peculiars (34+/-3%). However, about a fourth of the early-types are distorted ellipticals, and within CAS parameter space these bridge the early-type and peculiar population, suggesting a morphological evolutionary sequence. We also investigate the use of a (I-K) > 4 selection to locate EROs, finding that it selects galaxies at slightly higher average redshifts (<z> = 1.43+/-0.32) than the (R-K) > 5.3 limit with <z> = 1.28+/-0.23. Finally, by using the redshift distribution of K < 20 selected galaxies, and the properties of our EROs, we are able to rule out all monolithic collapse models for the formation of massive galaxies.
We present the results of a study on the properties and evolution of massive (M_* > 10^11 M_0) galaxies at z~0.4 - 2 utilising Keck spectroscopy, near-Infrared Palomar imaging, and Hubble, Chandra, and Spitzer data covering fields targeted by the DEE P2 galaxy spectroscopic survey. Our sample is K band selected based on wide-area NIR imaging from the Palomar Observatory Wide-Field Infrared Survey, which covers 1.53 deg^2 to K_s,vega~20.5. Our major findings include: (i) statistically the mass and number densities of M_* > 10^11 M_0 galaxies show little evolution between z = 0 - 1, and from z ~ 0 - 2 for M_* > 10^11.5 M_0 galaxies. (ii) Using Hubble ACS imaging, we find that M_* > 10^11 selected galaxies show a nearly constant elliptical fraction of ~70-90% at all redshifts. The remaining objects are peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. (iii) We find that only a fraction (~60%) of massive galaxies with M_* > 10^11 M_0 are on the red-sequence at z~1.4, while nearly 100% evolve onto it by z~0.4. (iv) By utilising Spitzer MIPS imaging and [OII] line fluxes we argue that M_* > 10^11.5 galaxies have a steeply declining star formation rate density ~(1+z)^6. By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M_* >10^11 M_0 galaxies undergo on average 0.9^+0.7_-0.5 major mergers at 0.4 < z < 1.4. (v) A high (5%) fraction of all M_* > 10^11 M_0 galaxies are X-ray emitters. Roughly half of these are morphologically distorted ellipticals or peculiars. We compare our results with the Millennium simulation, finding that the number and mass densities of M_* > 10^11.5 M_0 galaxies are under predicted by a factor of > 100.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا