ﻻ يوجد ملخص باللغة العربية
This paper presents a review of the topic of galaxy formation and evolution, focusing on basic features of galaxies, and how these observables reveal how galaxies and their stars assemble over cosmic time. I give an overview of the observed properties of galaxies in the nearby universe and for those at higher redshifts up to z~10. This includes a discussion of the major processes in which galaxies assemble and how we can now observe these - including the merger history of galaxies, the gas accretion and star formation rates. I show that for the most massive galaxies mergers and accretion are about equally important in the galaxy formation process between z = 1-3, while this likely differs for lower mass systems. I also discuss the mass differential evolution for galaxies, as well as how environment can affect galaxy evolution, although mass is the primary criteria for driving evolution. I also discuss how we are beginning to measure the dark matter content of galaxies at different epochs as measured through kinematics and clustering. Finally, I review how observables of galaxies, and the observed galaxy formation process, compares with predictions from simulations of galaxy formation, finding significant discrepancies in the abundances of massive galaxies and the merger history. I conclude by examining prospects for the future using JWST, Euclid, SKA, and the ELTs in addressing outstanding issues.
Pixel detectors have been the working horse for high resolution, high rate and radiation particle tracking for the past 20 years. The field has spun off into imaging applications with equal uniqueness. Now the move is towards larger integration and f
In this article we first review the past decade of efforts in detecting the missing baryons in the Warm Hot Intergalactic Medium (WHIM) and summarize the current state of the art by updating the baryon census and physical state of the detected baryon
In the light of several recent developments we revisit the phenomenon of galactic stellar disk truncations. Even 25 years since the first paper on outer breaks in the radial light profiles of spiral galaxies, their origin is still unclear. The two mo
In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of
Observations from the two STEREO-spacecraft give us for the first time the possibility to use stereoscopic methods to reconstruct the 3D solar corona. Classical stereoscopy works best for solid objects with clear edges. Consequently an application of