ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational facilities allow now the detection of optical and IR spectra of young M- and L-dwarfs. This enables empirical comparisons with old M- and L- dwarfs, and detailed studies in comparison with synthetic spectra. While classical stellar atmo sphere physics seems perfectly appropriate for old M-dwarfs, more physical and chemical processes, cloud formation in particular, needs to be modelled in the substellar regime to allow a detailed spectral interpretation. Not much is known so far about the details of the inset of cloud formation at the spectral transition region between M and L dwarfs. Furthermore there is observational evidence for diversity in the dust properties of objects having the same spectral type. Do we understand these differences? The question is also how young M- and L-dwarfs need to be classified, which stellar parameter do they have and whether degenerations in the stellar parameter space due to the changing atmosphere physics are present, like in the L-T transition region. The Splinter was driven by these questions which we will use to encourage interactions between observation and theory. Given the recent advances, both in observations and spectral modelling, an intensive discussion between observers and theoreticians will create new synergies in our field.
202 - Christiane Helling 2008
Clouds seem like an every-day experience. But -- do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed micro-physical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.
We aim to understand cloud formation in substellar objects. We combined the non-equilibrium, stationary cloud model of Helling, Woitke & Thi (2008; seed formation, growth, evaporation, gravitational settling, element conservation) with the general-pu rpose model atmosphere code PHOENIX (radiative transfer, hydrostatic equilibrium, mixing length theory, chemical equilibrium) in order to consistently calculate cloud formation and radiative transfer with their feedback on convection and gas phase depletion. We calculate the complete 1D model atmosphere structure and the chemical details of the cloud layers. The DRIFT-PHOENIX models enable the first stellar atmosphere simulation that is based on the actual cloud formation process. The resulting (T,p) profiles differ considerably from the previous limiting PHOENIX cases DUSTY and COND. A tentative comparison with observations demonstrates that the determination of effective temperatures based on simple cloud models has to be applied with care. Based on our new models, we suggest a mean Teff=1800K for the L-dwarf twin-binary system DENIS J0205-1159 which is up to 500K hotter than suggested in the literature. We show transition spectra for gas-giant planets which form dust clouds in their atmospheres and evaluate photometric fluxes for a WASP-1 type system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا