ترغب بنشر مسار تعليمي؟ اضغط هنا

The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding $approx 80$ days. The intrinsic brightness of ULPCs are ~1 to ~3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and their locations in the color-magnitude diagram and the Period-Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be $mu_{M31,ULPC}=24.30pm0.76$ mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.
Ultra-long-period Cepheids (ULPCs) are important in distance-scale studies due to their potential for determining distance beyond ~100 Mpc. We performed a comprehensive search for ULPCs in M31, a local benchmark to calibrate the distance ladders. We use data from the Palomar Transient Factory (PTF), which has imaged M31 using a 1.2-m telescope equipped with a ~7.26 deg2 field-of-view (FOV) camera, usually with daily sampling, since the beginning of 2010. The large FOV, together with the regular monitoring, enables us to probe ULPCs in the bulge, disk, and even out to the halo of M31. Using a difference imaging analysis technique, we found and characterized 3 promising ULPC candidates based on their luminosities, amplitudes and Fourier parameters. The mean absolute magnitude for these 3 ULPC candidates, calibrated with latest M31 distance, is M_R=-6.47mag. Two out of the 3 ULPC candidates have been reported in literature, however their published periods from Magnier et al. are about half of the periods we found in this work. The third ULPC candidate is a new discovery. We studied 5 other candidates and determined that they are probably Mira-like or ultra-long-period variables, but not ULPCs.
Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify th e structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.
In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARIs IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.
The Dark Energy Survey Data Management (DESDM) system will process and archive the data from the Dark Energy Survey (DES) over the five year period of operation. This paper focuses on a new adaptable processing framework developed to perform highly a utomated, high performance data parallel processing. The new processing framework has been used to process 45 nights of simulated DECam supernova imaging data, and was extensively used in the DES Data Challenge 4, where it was used to process thousands of square degrees of simulated DES data.
71 - C. Ngeow 2008
In this Paper, we have derived Cepheid period-luminosity (P-L) relations for the Large Magellanic Cloud (LMC) fundamental mode Cepheids, based on the data released from OGLE-III. We have applied an extinction map to correct for the extinction of thes e Cepheids. In addition to the VIW band P-L relations, we also include JHK and four Spitzer IRAC band P-L relations, derived by matching the OGLE-III Cepheids to the 2MASS and SAGE datasets, respectively. We also test the non-linearity of the Cepheid P-L relations based on extinction-corrected data. Our results (again) show that the LMC P-L relations are non-linear in VIJH bands and linear in KW and the four IRAC bands, respectively.
175 - C. Ngeow 2008
The Cepheid period-luminosity (P-L) relation is regarded as a linear relation (in log[P]) for a wide period range from ~2 to ~100 days. However, several recent controversial works have suggested that the P-L relation derived from the Large Magellanic Cloud (LMC) Cepheids exhibits a non-linear feature with a break period around 10 days. Here we review the evidence for linear/non-linear P-L relations from optical to near infrared bands. We offer a possible theoretical explanation to account for the nonlinear P-L relation from the idea of stellar photosphere - hydrogen ionization front interaction.
71 - C. Ngeow 2008
Using Spitzer archival data from the SAGE (Surveying the Agents of a Galaxys Evolution) program, we derive the Cepheid period-luminosity (P-L) relation at 3.6, 4.5, 5.8 and 8.0 microns for Large Magellanic Cloud (LMC) Cepheids. These P-L relations ca n be used, for example, in future extragalactic distance scale studies carried out with the James Webb Space Telescope. We also derive Cepheid period-color (P-C) relations in these bands and find that the slopes of the P-C relations are relatively flat. We test the nonlinearity of these P-L relations with the F statistical test, and find that the 3.6 micron, 4.5 micron and 5.8 micron P-L relations are consistent with linearity. However the 8.0 micron P-L relation presents possible but inconclusive evidence of nonlinearity.
51 - S. Kanbur 2007
Recent evidence has emerged that the Cepheid PL relation in the LMC is nonlinear in the sense that the existing data are more consistent with two lines of differing slope with a break at a period of 10 days. We review the statistical evidence for thi s, the implications for the extra-galactic distance scale and CMB independent estimations of Hubbles constant and briefly outline one possible physical mechanism which could cause this nonlinearity.
277 - C. Ngeow 2007
A number of recent works have suggested that the period-luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids exhibits a controversial nonlinear feature with a break period at 10 days. Therefore, the aim of this Research Note is to t est the linearity/nonlinearity of the PL relations for the LMC Cepheids in BVIcJHKs band, as well as in the Wesenheit functions. We show that simply comparing the long and short period slopes, together with their associate d standard deviations, leads to a strictly larger error rate than applying rigorous statistical tests such as the F-test. We applied various statistical tests to the current published LMC Cepheid data. These statistical tests include the F-test, the testimator test, and the Schwarz information criterion (SIC) method. The results from these statistical tests strongly suggest that the LMC PL relation is nonlinear in BVIcJH band but linear in the Ks band and in the Wesenheit functions. Using the properties of period-color relations at maximum light and multi-phase relations, we believe that the nonlinear PL relation is not caused by extinction errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا