ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate theoretically the magnetic dynamics in a ferroelectric/ferromagnetic heterostructure coupled via strain-mediated magnetoelectric interaction. We predict an electric field-induced magnetic switching in the plane perpendicular to the mag neto-crystalline easy axis, and trace this effect back to the piezoelectric control of the magnetoelastic coupling. We also investigate the magnetic remanence and the electric coercivity.
We study theoretically the coupled multiferroic dynamics of one-dimensional ferroelectric/ferromagnet chains driven by harmonic magnetic and electric fields as a function of the chain length. A linear magnetoelectric coupling is dominated by the spin -polarized screening charge at the interface. We performed Monte-Carlo simulations and calculations based on the coupled Landau-Lifshitz-Gilbert and Landau-Khalatnikov equations showing that the net magnetization and the total polarization of thin heterostructures, i.e. with up to ten ferroelectric and ferromagnetic sites counted from the interface, can be completely reversed by external electric and magnetic fields, respectively. However, for larger system solely a certain magnetoelectrical control can be achieved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا