ترغب بنشر مسار تعليمي؟ اضغط هنا

34 - C. Liu , S. Feltzing , 2015
The origin of a new kinematically identified metal-poor stellar stream, the KFR08 stream, has not been established. We present stellar parameters, stellar ages, and detailed elemental abundances for Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Ni, Zn, Sr, Y, Zr, Ba, La, and Eu for 16 KFR08 stream members based on analysis of high resolution spectra. Based on the abundance ratios of 14 elements, we use the chemical tagging method to identify the stars which have the same chemical composition, and thus, might have a common birthplace, such as a cluster. Although three stars were tagged with similar elemental abundances ratios, we find that, statistically, it is not certain that they originate from a dissolved star cluster. This conclusion is consistent with the large dispersion of [Fe/H] ($sigma_{rm{[Fe/H]}} = 0.29$) among the 16 stream members. We find that our stars are $alpha$ enhanced and that the abundance patterns of the stream members are well matched to the thick disk. In addition, most of the stream stars have estimated stellar ages larger than 11 Gyr. These results, together with the hot kinematics of the stream stars, suggest that the KFR08 stream is originated from the thick disk population which was perturbed by a massive merger in the early universe.
28 - C. Liu , G. Ruchti , S. Feltzing 2014
The aim of this paper is to find lost siblings of the Sun by analyzing high resolution spectra. Finding solar siblings will enable us to constrain the parameters of the parental cluster and the birth place of the Sun in the Galaxy. The solar siblings can be identified by accurate measurements of metallicity, stellar age and elemental abundances for solar neighbourhood stars. The solar siblings candidates were kinematically selected based on their proper motions, parallaxes and colours. Stellar parameters were determined through a purely spectroscopic approach and partly physical method, respectively. Comparing synthetic with observed spectra, elemental abundances were computed based on the stellar parameters obtained using a partly physical method. A chemical tagging technique was used to identify the solar siblings. We present stellar parameters, stellar ages, and detailed elemental abundances for Na, Mg, Al, Si, Ca, Ti, Cr, Fe, and Ni for 32 solar sibling candidates. Our abundances analysis shows that four stars are chemically homogenous together with the Sun. Technique of chemical tagging gives us a high probability that they might be from the same open cluster. Only one candidate HIP 40317 which has solar metallicity and age could be a solar sibling. We performed simulations of the Suns birth cluster in analytical Galactic model and found that most of the radial velocities of the solar siblings lie in the range $-10 leq mathrm{V_r}leq 10$ $mathrm{km~s^{-1}}$, which is smaller than the radial velocity of HIP 40317 $(mathrm{V_r} = 34.2~mathrm{km~s^{-1}})$, under different Galactic parameters and different initial conditions of the Suns birth cluster. The sibling status for HIP 40317 is not directly supported by our dynamical analysis.
160 - Jia-Cheng Liu , Yi Xie , Zi Zhu 2013
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper motions, 2003, A&A, 404, 743). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic center, the systematic proper motion can reach an amplitude larger than 1000 uas/yr by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 uas/yr. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا