ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the KFR08 stellar stream

36   0   0.0 ( 0 )
 نشر من قبل Cheng Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of a new kinematically identified metal-poor stellar stream, the KFR08 stream, has not been established. We present stellar parameters, stellar ages, and detailed elemental abundances for Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Ni, Zn, Sr, Y, Zr, Ba, La, and Eu for 16 KFR08 stream members based on analysis of high resolution spectra. Based on the abundance ratios of 14 elements, we use the chemical tagging method to identify the stars which have the same chemical composition, and thus, might have a common birthplace, such as a cluster. Although three stars were tagged with similar elemental abundances ratios, we find that, statistically, it is not certain that they originate from a dissolved star cluster. This conclusion is consistent with the large dispersion of [Fe/H] ($sigma_{rm{[Fe/H]}} = 0.29$) among the 16 stream members. We find that our stars are $alpha$ enhanced and that the abundance patterns of the stream members are well matched to the thick disk. In addition, most of the stream stars have estimated stellar ages larger than 11 Gyr. These results, together with the hot kinematics of the stream stars, suggest that the KFR08 stream is originated from the thick disk population which was perturbed by a massive merger in the early universe.

قيم البحث

اقرأ أيضاً

136 - B. Sesar , J. Bovy , E. J. Bernard 2015
The Ophiuchus stream is a recently discovered stellar tidal stream in the Milky Way. We present high-quality spectroscopic data for 14 stream member stars obtained using the Keck and MMT telescopes. We confirm the stream as a fast moving ($v_{los}sim 290$ km s$^{-1}$), kinematically cold group ($sigma_{v_{los}}lesssim1$ km s$^{-1}$) of $alpha$-enhanced and metal-poor stars (${rm [alpha/Fe]sim0.4}$ dex, ${rm [Fe/H]sim-2.0}$ dex). Using a probabilistic technique, we model the stream simultaneously in line-of-sight velocity, color-magnitude, coordinate, and proper motion space, and so determine its distribution in 6D phase-space. We find that that the stream extends in distance from 7.5 to 9 kpc from the Sun; it is 50 times longer than wide, merely appearing highly foreshortened in projection. The analysis of the stellar population contained in the stream suggests that it is $sim12$ Gyr old, and that its initial stellar mass was $sim2times10^4$ $M_{odot}$ (or at least $gtrsim7times10^3$ $M_{odot}$). Assuming a fiducial Milky Way potential, we fit an orbit to the stream which matches the observed phase-space distribution, except for some tension in the proper motions: the stream has an orbital period of $sim350$ Myr, and is on a fairly eccentric orbit ($esim0.66$) with a pericenter of $sim3.5$ kpc and an apocenter of $sim17$ kpc. The phase-space structure and stellar population of the stream show that its progenitor must have been a globular cluster that was disrupted only $sim240$ Myr ago. We do not detect any significant overdensity of stars along the stream that would indicate the presence of a progenitor, and conclude that the stream is all that is left of the progenitor.
We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 ele ments have been derived from over 10,000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from $10^6-10^7 M_odot$. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each stars abundance and uncertainty. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Mergers and tidal interactions between massive galaxies and their dwarf satellites are a fundamental prediction of the Lambda-Cold Dark Matter cosmology. These events are thought to influence galaxy evolution throughout cosmic history and to provide important observational diagnostics of structure formation. Stellar streams in the Local Group are spectacular evidence for satellite disruption at the present day. However, constructing a significant sample of tidal streams beyond our immediate cosmic neighborhood has proven a daunting observational challenge and their potential for deepening our understanding of galaxy formation has yet to be realized. Over the last decade, the Stellar Tidal Stream Survey has obtained deep, wide-field images of nearby Milky-Way analog galaxies with a network of robotic amateur telescopes, revealing for the first time an assortment of large-scale tidal structures in their halos. I discuss the main results of this project and future plans for performing dynamical studies of the discovered streams.
Context. As a fragile element, lithium is a sensitive probe of physical processes occurring in stellar interiors. Aims. We aim at investigating the relationship between lithium abundance and rotation rate in low-mass members of the newly discovered 1 25~Myr-old Psc-Eri stellar stream. Methods. We obtained high resolution optical spectra and measure the equivalent width of the 607.8 nm LiI line for 40 members of the Psc-Eri stream, whose rotational periods have been derived by arXiv:1905.10588. Results. We show that a tight correlation exists between lithium content and rotation rate among the late-G to early K-type stars of the Psc-Eri stream. Fast rotators are systematically Li-rich, while slow rotators are Li-depleted. This trend mimics the one previously reported for the similar age Pleiades cluster. Conclusions. The lithium-rotation connection thus seems to be universal over a restricted effective temperature range for low-mass stars at or close to the zero-age main sequence, and does not depend on environmental conditions.
We report tentative evidence for a cold stellar stream in the ultra-diffuse galaxy NGC1052-DF2. If confirmed, this stream (which we refer to as The Maybe Stream) would be the first cold stellar stream detected outside of the Local Group. The candidat e stream is very narrow and has an unusual and highly curved shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا