ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, an d Bose glass. At lower interaction strength, we find that sizable disorder strength is needed in order to destroy superfluidity in favor of the Bose glass. On the other hand, at large enough interaction superfluidity is completely destroyed in favor of the Mott insulator (at lower disorder strength) or the Bose glass (at larger disorder strength). At intermediate interactions, the system undergoes an insulator to superfluid transition upon increasing the disorder, while a further increase of disorder strength drives the superfluid to Bose glass phase transition. While we are not able to discern between the Mott insulator and the Bose glass at intermediate interactions, we study the transition between these two phases at larger interaction strength and, unlike what reported in arXiv:1110.3213v3 for random disorder, find no evidence of a Mott-glass-like behavior.
In this paper, we propose an optimal relay power allocation of an Amplify-and-Forward relay networks with non-linear power amplifiers. Based on Bussgang Linearization Theory, we depict the non-linear amplifying process into a linear system, which let s analyzing system performance easier. To obtain spatial diversity, we design a complete practical framework of a non-linear distortion aware receiver. Consider a total relay power constraint, we propose an optimal power allocation scheme to maximum the receiver signal-to-noise ratio. Simulation results show that proposed optimal relay power allocation indeed can improve the system capacity and resist the non-linear distortion. It is also verified that the proposed transmission scheme outperforms other transmission schemes without considering non-linear distortion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا