ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Relay Power Allocation for Amplify-and-Forward Relay Networks with Non-linear Power Amplifiers

173   0   0.0 ( 0 )
 نشر من قبل Chao Zhang
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an optimal relay power allocation of an Amplify-and-Forward relay networks with non-linear power amplifiers. Based on Bussgang Linearization Theory, we depict the non-linear amplifying process into a linear system, which lets analyzing system performance easier. To obtain spatial diversity, we design a complete practical framework of a non-linear distortion aware receiver. Consider a total relay power constraint, we propose an optimal power allocation scheme to maximum the receiver signal-to-noise ratio. Simulation results show that proposed optimal relay power allocation indeed can improve the system capacity and resist the non-linear distortion. It is also verified that the proposed transmission scheme outperforms other transmission schemes without considering non-linear distortion.



قيم البحث

اقرأ أيضاً

104 - Hongwu Liu , Kyung Sup Kwak 2016
This paper proposes a virtual harvest-transmit model and a harvest-transmit-store model for amplify-and-forward full-duplex relay (FDR) networks with power splitting-based simultaneous wireless information and power transfer. The relay node employs a battery group consisting of two rechargeable batteries. By switching periodically between two batteries for charging and discharging in two consecutive time slots of each transmission block, all the harvested energy in each block has been applied for full duplex transmission in the virtual harvest-transmit model. By employing energy scheduling, the relay node switches among the harvesting, relaying, harvesting-relaying, and idle behaviors at a block level, so that a part of the harvested energy in a block can be scheduled for future usage in the harvest-transmit-store model. A greedy switching policy is designed to implement the harvest-transmit-store model, where the FDR node transmits when its residual energy ensures decoding at the destination. Numerical results verify the outage performance of the proposed schemes.
This paper considers a multi-user single-relay wireless network, where the relay gets paid for helping the users forward signals, and the users pay to receive the relay service. We study the relay power allocation and pricing problems, and model the interaction between the users and the relay as a two-level Stackelberg game. In this game, the relay, modeled as the service provider and the leader of the game, sets the relay price to maximize its revenue; while the users are modeled as customers and the followers who buy power from the relay for higher transmission rates. We use a bargaining game to model the negotiation among users to achieve a fair allocation of the relay power. Based on the proposed fair relay power allocation rule, the optimal relay power price that maximizes the relay revenue is derived analytically. Simulation shows that the proposed power allocation scheme achieves higher network sum-rate and relay revenue than the even power allocation. Furthermore, compared with the sum-rate-optimal solution, simulation shows that the proposed scheme achieves better fairness with comparable network sum-rate for a wide range of network scenarios. The proposed pricing and power allocation solutions are also shown to be consistent with the laws of supply and demand.
This paper investigates power splitting for full-duplex relay networks with wireless information and energy transfer. By applying power splitting as a relay transceiver architecture, the full duplex information relaying can be powered by energy harve sted from the source-emitted radio frequency signal. In order to minimize outage probability, power splitting ratios have been dynamically optimized according to full channel state information (CSI) and partial CSI, respectively. Under strong loop interference, the proposed full CSI-based and partial CSI-based power splitting schemes achieve the better outage performance than the fixed power splitting scheme, whereas the partial CSI-based power splitting scheme can ensure competitive outage performance without requiring CSI of the second-hop link. It is also observed that the worst outage performance is achieved when the relay is located midway between the source and destination, whereas the outage performance of partial CSI-based power splitting scheme approaches that of full CSI-based scheme when the relay is placed close to the destination.
We consider the opportunistic multiuser diversity in the multiuser two-way amplify-and-forward (AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming scheme, selects a set of two way relaying user pairs to enhance the degree of freedom (DoF) and consequently the sum throughput of the system. The proposed channel aligned pair scheduling (CAPS) algorithm reduces the inter-pair interference and keeps the signal to interference plus noise power ratio (SINR) of user pairs relatively interference free in average sense when the number of user pairs become very large. For ideal situations, where the number of user pairs grows faster than the system signal to noise ratio (SNR), the DoF of $M$ per channel use can be achieved when $M$ is the relay antenna size. With a limited number of pairs, the system is overloaded and the sum rates saturate at high signal to noise ratio (SNR) though modifications of CAPS can improve the performance to a certain amount. The performance of CAPS can be further enhanced by semi-orthogonal channel aligned pair scheduling (SCAPS) algorithm, which not only aligns the pair channels but also forms semi-orthogonal inter-pair channels. Simulation results show that we provide a set of approaches based on (S)CAPS and modified (S)CAPS, which provides system performance benefit depending on the SNR and the number of user pairs in the network.
Capacity gains from transmitter and receiver cooperation are compared in a relay network where the cooperating nodes are close together. Under quasi-static phase fading, when all nodes have equal average transmit power along with full channel state i nformation (CSI), it is shown that transmitter cooperation outperforms receiver cooperation, whereas the opposite is true when power is optimally allocated among the cooperating nodes but only CSI at the receiver (CSIR) is available. When the nodes have equal power with CSIR only, cooperative schemes are shown to offer no capacity improvement over non-cooperation under the same network power constraint. When the system is under optimal power allocation with full CSI, the decode-and-forward transmitter cooperation rate is close to its cut-set capacity upper bound, and outperforms compress-and-forward receiver cooperation. Under fast Rayleigh fading in the high SNR regime, similar conclusions follow. Cooperative systems provide resilience to fading in channel magnitudes; however, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together for the decode-and-forward scheme to be capacity-achieving. Moreover, to realize capacity improvement, full CSI is necessary in transmitter cooperation, while in receiver cooperation optimal power allocation is essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا