ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate observational consequences of the early episodically dominating dark energy on the evolution of cosmological structures. For this aim, we introduce the minimally coupled scalar field dark energy model with the Albrecht-Skordis potentia l which allows a sudden ephemeral domination of dark energy component during the radiation or early matter era. The conventional cosmological parameters in the presence of such an early dark energy are constrained with WMAP and Planck cosmic microwave background radiation data including other external data sets. It is shown that in the presence of such an early dark energy the estimated cosmological parameters can deviate substantially from the currently known $Lambdatextrm{CDM}$-based parameters, with best-fit values differing by several percents for WMAP and by a percent level for Planck data. For the latter case, only a limited amount of dark energy with episodic nature is allowed since the Planck data strongly favors the $Lambdatextrm{CDM}$ model. Compared with the conventional dark energy model, the early dark energy dominating near radiation-matter equality or at the early matter era results in the shorter cosmic age or the presence of tensor-type perturbation, respectively. Our analysis demonstrates that the alternative cosmological parameter estimation is allowed based on the same observations even in Einsteins gravity.
We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequen tial cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form $sim 1/a^6$. The evolution equations mimic $Lambda$CDM behavior up to $1/a^3$ term and the additional term represents a deviation from $Lambda$CDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.
31 - Chan-Gyung Park 2008
The general world model for homogeneous and isotropic universe has been roposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a 5-dimensional space-time that is embedding the universe , and define the line element as the separation between two neighboring events that are distinct in space and time, as viewed in the world reference frame. The effect of cosmic expansion on the measurement of physical distance has been correctly included in the new metric, which differs from the Friedmann-Robertson-Walker metric where the spatial separation is measured for events on the hypersurface at a constant time while the temporal separation is measured for events at different time epochs. The Einsteins field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا