ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational effects of the early episodically dominating dark energy

280   0   0.0 ( 0 )
 نشر من قبل Chan-Gyung Park
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate observational consequences of the early episodically dominating dark energy on the evolution of cosmological structures. For this aim, we introduce the minimally coupled scalar field dark energy model with the Albrecht-Skordis potential which allows a sudden ephemeral domination of dark energy component during the radiation or early matter era. The conventional cosmological parameters in the presence of such an early dark energy are constrained with WMAP and Planck cosmic microwave background radiation data including other external data sets. It is shown that in the presence of such an early dark energy the estimated cosmological parameters can deviate substantially from the currently known $Lambdatextrm{CDM}$-based parameters, with best-fit values differing by several percents for WMAP and by a percent level for Planck data. For the latter case, only a limited amount of dark energy with episodic nature is allowed since the Planck data strongly favors the $Lambdatextrm{CDM}$ model. Compared with the conventional dark energy model, the early dark energy dominating near radiation-matter equality or at the early matter era results in the shorter cosmic age or the presence of tensor-type perturbation, respectively. Our analysis demonstrates that the alternative cosmological parameter estimation is allowed based on the same observations even in Einsteins gravity.


قيم البحث

اقرأ أيضاً

New measurements of the expansion rate of the Universe have plunged the standard model of cosmology into a severe crisis. In this letter, we propose a simple resolution to the problem that relies on a first order phase transition in a dark sector in the early Universe, before recombination. This will lead to a short phase of a New Early Dark Energy (NEDE) component and can explain the observations. We model the false vacuum decay of the NEDE scalar field as a sudden transition from a cosmological constant source to a decaying fluid with constant equation of state. The corresponding fluid perturbations are covariantly matched to the adiabatic fluctuations of a sub-dominant scalar field that triggers the phase transition. Fitting our model to measurements of the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO, and supernovae (SNe) yields a significant improvement of the best-fit compared with the standard cosmological model without NEDE. We find the mean value of the present Hubble parameter in the NEDE model to be $H_0=71.4 pm 1.0 ~textrm{km}, textrm{s}^{-1}, textrm{Mpc}^{-1}$ ($68, %$ C.L.).
92 - Ming-Jian Zhang , Hong Li 2018
In the present paper, we investigate three scalar fields, qu field, phantom field and tachyon field, to explore the source of dark energy, using the Gaussian processes method from the background data and perturbation growth rate data. The correspondi ng reconstructions all suggest that the dark energy should be dynamical. Moreover, the quintom field, a combination between qu field and phantom field, is powerfully favored by the data within 68% confidence level. Using the mean values of scalar field $phi$ and potential $V$, we fit the function $V(phi)$ in different fields. The fitted results imply that potential $V(phi)$ in each scalar field may be a double exponential function or Gaussian function. The Gaussian processes reconstructions also indicate that the tachyon scalar field cannot be convincingly favored by the data and is at a disadvantage to describe the dark energy.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic osc illation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of $Omega_{m0}$. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at $z=0.22$, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
A phenomenological model of dark energy that tracks the baryonic and cold dark matter at early times but resembles a cosmological constant at late times is explored. In the transition between these two regimes, the dark energy density drops rapidly a s if it were a relic species that freezes out, during which time the equation of state peaks at +1. Such an adjustment in the dark energy density, as it shifts from scaling to potential-domination, could be the signature of a trigger mechanism that helps explain the late-time cosmic acceleration. We show that the non-negligible dark energy density at early times, and the subsequent peak in the equation of state at the transition, leave an imprint on the cosmic microwave background anisotropy pattern and the rate of growth of large scale structure. The model introduces two new parameters, consisting of the present-day equation of state and the redshift of the freeze-out transition. A Monte Carlo Markov Chain analysis of a ten-dimensional parameter space is performed to compare the model with pre-Planck cosmic microwave background, large scale structure and supernova data and measurements of the Hubble constant. We find that the transition described by this model could have taken place as late as a redshift z~400. We explore the capability of future cosmic microwave background and weak lensing experiments to put tighter constraints on this model. The viability of this model may suggest new directions in dark-energy model building that address the coincidence problem.
94 - Ming-Jian Zhang , Hong Li 2018
In the present paper, we investigate the dark energy equation of state using the Gaussian processes analysis method, without confining a particular parametrization. The reconstruction is carried out by adopting the background data including supernova and Hubble parameter, and perturbation data from the growth rate. It suggests that the background and perturbation data both present a hint of dynamical dark energy. However, the perturbation data have a more promising potential to distinguish non-evolution dark energy including the cosmological constant model. We also test the influence of some parameters on the reconstruction. We find that the matter density parameter $Omega_{m0}$ has a slight effect on the background data reconstruction, but has a notable influence on the perturbation data reconstruction. While the Hubble constant presents a significant influence on the reconstruction from background data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا