ترغب بنشر مسار تعليمي؟ اضغط هنا

We present archival Spitzer IRS spectra of 19 luminous 8 micron selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on 2MASS/MSX (J, H, K, and 8 micron) colors in order to test the JHK8 classification scheme (Kastner et al. 2008). The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich asymptotic giant branch stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzers warm mission, through the use of IRAC [3.6]-[4.5] and 2MASS colors.
The infrared is a key wavelength regime for probing the dusty, obscured nuclear regions of active galaxies. We present results from an infrared study of 87 nearby Seyfert galaxies using the Spitzer Space Telescope and ground-based telescopes. Combini ng detailed modelling of the 3 - 100 micron spectral energy distributions with mid-IR spectral diagnostics and near-infrared observations, we find broad support for the unified model of AGNs. The IR emission of Seyfert 1s and 2s is consistent with their having the same type of central engine viewed at a different orientation. The nature of the putative torus is becoming clearer; in particular we present evidence that it is likely a clumpy medium. Mid-infrared correlations between tracers of star formation and AGN ionizing luminosity reveal the starburst-AGN connection implied by the black hole/bulge mass relation, however it is not yet clear if this is due to feedback.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا