ترغب بنشر مسار تعليمي؟ اضغط هنا

Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probabi lity distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.
We aim to measure the major merger rate of star-forming galaxies at 0.9 < z <1.8, using close pairs identified from integral field spectroscopy (IFS). We use the velocity field maps obtained with SINFONI/VLT on the MASSIV sample, selected from the st ar-forming population in the VVDS. We identify physical pairs of galaxies from the measurement of the relative velocity and the projected separation (r_p) of the galaxies in the pair. Using the well constrained selection function of the MASSIV sample we derive the gas-rich major merger fraction (luminosity ratio mu = L_2/L_1 >= 1/4), and, using merger time scales from cosmological simulations, the gas-rich major merger rate at a mean redshift up to z = 1.54. We find a high gas-rich major merger fraction of 20.8+15.2-6.8 %, 20.1+8.0-5.1 % and 22.0+13.7-7.3 % for close pairs with r_p <= 20h^-1 kpc in redshift ranges z = [0.94, 1.06], [1.2, 1.5) and [1.5, 1.8), respectively. This translates into a gas-rich major merger rate of 0.116+0.084-0.038 Gyr^-1, 0.147+0.058-0.037 Gyr^-1 and 0.127+0.079-0.042 Gyr^-1 at z = 1.03, 1.32 and 1.54, respectively. Combining our results with previous studies at z < 1, the gas-rich major merger rate evolves as (1+z)^n, with n = 3.95 +- 0.12, up to z = 1.5. From these results we infer that ~35% of the star-forming galaxies with stellar masses M = 10^10 - 10^10.5 M_Sun have undergone a major merger since z ~ 1.5. We develop a simple model which shows that, assuming that all gas-rich major mergers lead to early-type galaxies, the combined effect of gas-rich and dry mergers is able to explain most of the evolution in the number density of massive early-type galaxies since z ~ 1.5, with our measured gas-rich merger rate accounting for about two-thirds of this evolution.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
64 - C. Lopez-Sanjuan (1 , 2 , 3 2010
(Abriged) Our goal here is to provide merger frequencies that encompass both major and minor mergers, derived from close pair statistics. We use B-band luminosity- and mass-limited samples from an Spitzer/IRAC-selected catalogue of GOODS-S. We presen t a new methodology for computing the number of close companions, Nc, when spectroscopic redshift information is partial. We select as close companions those galaxies separated by 6h^-1 kpc < rp < 21h^-1 kpc in the sky plane and with a difference Delta_v <= 500 km s^-1 in redshift space. We provide Nc for four different B-band-selected samples. Nc increases with luminosity, and its evolution with redshift is faster in more luminous samples. We provide Nc of M_star >= 10^10 M_Sun galaxies, finding that the number including minor companions (mass ratio >= 1/10) is roughly two times the number of major companions alone (mass ratio >= 1/3) in the range 0.2 <= z < 1.1. We compare the major merger rate derived by close pairs with the one computed by morphological criteria, finding that both approaches provide similar merger rates for field galaxies when the progenitor bias is taken into account. Finally, we estimate that the total (major+minor) merger rate is ~1.7 times the major merger rate. Only 30% to 50% of the M_star >= 10^10 M_Sun early-type (E/S0/Sa) galaxies that appear z=1 and z=0 may have undergone a major or a minor merger. Half of the red sequence growth since z=1 is therefore unrelated to mergers.
We study the evolution of galaxy structure since z ~ 1 to the present. From a GOODS-S multi-band catalog we define (blue) luminosity- and mass-weighted samples, limited by M_B <= -20 and M_star >= 10^10 M_Sun, comprising 1122 and 987 galaxies, respec tively. We extract early-type (E/S0/Sa) and late-type (Sb-Irr) subsamples by their position in the concentration-asymmetry plane, in which galaxies exhibit a clear bimodality. We find that the early-type fraction, f_ET, rises with cosmic time, with a corresponding decrease in the late-type fraction, f_LT, in both luminosity- and mass-selected samples. However, the evolution of the comoving number density is very different: the decrease in the total number density of M_B <= -20 galaxies since z = 1 is due to the decrease in the late-type population, which accounts for ~75% of the total star-formation rate in the range under study, while the increase in the total number density of M_star >= 10^10 M_Sun galaxies in the same redshift range is due to the evolution of early types. This suggests that we need a structural transformation between late-type galaxies that form stars actively and early-type galaxies in which the stellar mass is located. Comparing the observed evolution with the gas-rich major merger rate in GOODS-S, we infer that only ~20% of the new early-type galaxies with M_star >= 10^10 M_Sun appeared since z ~ 1 can be explained by this kind of mergers, suggesting that minor mergers and secular processes may be the driving mechanisms of the structural evolution of intermediate-mass (M_star ~ 4x10^10 M_Sun) galaxies since z ~ 1.
122 - C. Lopez-Sanjuan 2009
Aims: We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries, and add ress three main sources of systematic errors: (i) we explicitly apply morphological K-corrections, (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift, and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m(z) = f_m(0) (1+z)^m, we find that m = 1.8 +/- 0.5 for M_B <= -20 galaxies, while m = 5.4 +/- 0.4 for M_star >= 10^10 M_Sun galaxies. When we translate our merger fractions to merger rates (R_m), their evolution, parameterized as R_m(z) = R_m(0) (1+z)^n, is quite similar in both cases: n = 3.3 +/- 0.8 and n = 3.5 +/- 0.4, respectively. Conclusions: Our results imply that only ~8% of todays M_star >= 10^10 M_Sun galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~21% of this mass galaxies at z ~ 1 have undergone one of these mergers since z ~ 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_star >= 10^10 M_Sun galaxies since z ~ 1, but may be an important process at z > 1.
The determination of galaxy merger fraction of field galaxies using automatic morphological indices and photometric redshifts is affected by several biases if observational errors are not properly treated. Here, we correct these biases using maximum likelihood techniques. The method takes into account the observational errors to statistically recover the real shape of the bidimensional distribution of galaxies in redshift - asymmetry space, needed to infer the redshift evolution of galaxy merger fraction. We test the method with synthetic catalogs and show its applicability limits. The accuracy of the method depends on catalog characteristics such as the number of sources or the experimental error sizes. We show that the maximum likelihood method recovers the real distribution of galaxies in redshift and asymmetry space even when binning is such that bin sizes approach the size of the observational errors. We provide a step-by-step guide to applying maximum likelihood techniques to recover any one- or bidimensional distribution subject to observational errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا