ﻻ يوجد ملخص باللغة العربية
Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
Our goal is to study the evolution of the $B-$band luminosity function (LF) since $z=1$ using ALHAMBRA data. We used the photometric redshift and the $I-$band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies wi
Context. Knowing the exact shape of the UV luminosity function of high-redshift galaxies is important in order to understand the star formation history of the early universe. However, the uncertainties, especially at the faint and bright ends of the
This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500A to 9700A. The photometric description of the system is done by
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 f