ترغب بنشر مسار تعليمي؟ اضغط هنا

It is known that there are uncoupled learning heuristics leading to Nash equilibrium in all finite games. Why should players use such learning heuristics and where could they come from? We show that there is no uncoupled learning heuristic leading to Nash equilibrium in all finite games that a player has an incentive to adopt, that would be evolutionary stable or that could learn itself. Rather, a player has an incentive to strategically teach such a learning opponent in order secure at least the Stackelberg leader payoff. The impossibility result remains intact when restricted to the classes of generic games, two-player games, potential games, games with strategic complements or 2x2 games, in which learning is known to be nice. More generally, it also applies to uncoupled learning heuristics leading to correlated equilibria, rationalizable outcomes, iterated admissible outcomes, or minimal curb sets. A possibility result restricted to strategically trivial games fails if some generic games outside this class are considered as well.
In this paper, we present an epistemic logic approach to the compositionality of several privacy-related informationhiding/ disclosure properties. The properties considered here are anonymity, privacy, onymity, and identity. Our initial observation r eveals that anonymity and privacy are not necessarily sequentially compositional; this means that even though a system comprising several sequential phases satisfies a certain unlinkability property in each phase, the entire system does not always enjoy a desired unlinkability property. We show that the compositionality can be guaranteed provided that the phases of the system satisfy what we call the independence assumptions. More specifically, we develop a series of theoretical case studies of what assumptions are sufficient to guarantee the sequential compositionality of various degrees of anonymity, privacy, onymity, and/or identity properties. Similar results for parallel composition are also discussed.
This paper presents a two-dimensional modal logic for reasoning about the changing patterns of knowledge and social relationships in networks organised on the basis of a symmetric friendship relation, providing a precise language for exploring logic in the community [11]. Agents are placed in the model, allowing us to express such indexical facts as I am your friend and You, my friends, are in danger. The technical framework for this work is general dynamic dynamic logic (GDDL) [4], which provides a general method for extending modal logics with dynamic operators for reasoning about a wide range of model-transformations, starting with those definable in propositional dynamic logic (PDL) and extended to allow for the more subtle operators involved in, for example, private communication, as represented in dynamic epistemic logic (DEL) and related systems. We provide a hands-on introduction to GDDL, introducing elements of the formalism as we go, but leave the reader to consult [4] for technical details. Instead, the purpose of this paper is to investigate a number of conceptual issues that arise when considering communication between agents in such networks, both from one agent to another, and broadcasts to socially-defined groups of agents, such as the group of my friends.
We propose modal Markov logic as an extension of propositional Markov logic to reason under the principle of maximum entropy for modal logics K45, KD45, and S5. Analogous to propositional Markov logic, the knowledge base consists of weighted formulas , whose weights are learned from data. However, in contrast to Markov logic, in our framework we use the knowledge base to define a probability distribution over non-equivalent epistemic situations (pointed Kripke structures) rather than over atoms, and use this distribution to assign probabilities to modal formulas. As in all probabilistic representations, the central task in our framework is inference. Although the size of the state space grows doubly exponentially in the number of propositions in the domain, we provide an algorithm that scales only exponentially in the size of the knowledge base. Finally, we briefly discuss the case of languages with an infinite number of propositions.
A traditional assumption in game theory is that players are opaque to one another -- if a player changes strategies, then this change in strategies does not affect the choice of other players strategies. In many situations this is an unrealistic assu mption. We develop a framework for reasoning about games where the players may be translucent to one another; in particular, a player may believe that if she were to change strategies, then the other player would also change strategies. Translucent players may achieve significantly more efficient outcomes than opaque ones. Our main result is a characterization of strategies consistent with appropriate analogues of common belief of rationality. Common Counterfactual Belief of Rationality (CCBR) holds if (1) everyone is rational, (2) everyone counterfactually believes that everyone else is rational (i.e., all players i believe that everyone else would still be rational even if i were to switch strategies), (3) everyone counterfactually believes that everyone else is rational, and counterfactually believes that everyone else is rational, and so on. CCBR characterizes the set of strategies surviving iterated removal of minimax dominated strategies: a strategy $sigma_i$ is minimax dominated for i if there exists a strategy $sigma_i$ for i such that $min_{mu_{-i}} u_i(sigma_i, mu_{-i}) > max_{mu_{-i}} u_i(sigma_i, mu_{-i})$.
49 - Jan van Eijck 2013
Propositional Dynamic Logic or PDL was invented as a logic for reasoning about regular programming constructs. We propose a new perspective on PDL as a multi-agent strategic logic (MASL). This logic for strategic reasoning has group strategies as fir st class citizens, and brings game logic closer to standard modal logic. We demonstrate that MASL can express key notions of game theory, social choice theory and voting theory in a natural way, we give a sound and complete proof system for MASL, and we show that MASL encodes coalition logic. Next, we extend the language to epistemic multi-agent strategic logic (EMASL), we give examples of what it can express, we propose to use it for posing new questions in epistemic social choice theory, and we give a calculus for reasoning about a natural class of epistemic game models. We end by listing avenues for future research and by tracing connections to a number of other logics for reasoning about strategies.
124 - Torben Brauner 2013
The main aim of the present paper is to use a proof system for hybrid modal logic to formalize what are called falsebelief tasks in cognitive psychology, thereby investigating the interplay between cognition and logical reasoning about belief. We consider two differe
We identify a subproblem of the model-checking problem for the epistemic mu-calculus which is decidable. Formulas in the instances of this subproblem allow free variables within the scope of epistemic modalities in a restricted form that avoids embod ying any form of common knowledge. Our subproblem subsumes known decidable fragments of epistemic CTL/LTL, may express winning strategies in two-player games with one player having imperfect information and non-observable objectives, and, with a suitable encoding, decidable instances of the model-checking problem for ATLiR.
113 - Bassel Tarbush 2013
Moses & Nachum ([7]) identify conceptual flaws in Bacharachs generalization ([3]) of Aumanns seminal agreeing to disagree result ([1]). Essentially, Bacharachs framework requires agents decision functions to be defined over events that are informatio nally meaningless for the agents. In this paper, we argue that the analysis of the agreement theorem should be carried out in information structures that can accommodate for counterfactual states. We therefore develop a method for constructing such counterfactual structures (starting from partitional structures), and prove a new agreement theorem within such structures. Furthermore, we show that our approach also resolves the conceptual flaws in the sense that, within our framework, decision functions are always only defined over events that are informationally meaningful for the agents.
Most work on manipulation assumes that all preferences are known to the manipulators. However, in many settings elections are open and sequential, and manipulators may know the already cast votes but may not know the future votes. We introduce a fram ework, in which manipulators can see the past votes but not the future ones, to model online coalitional manipulation of sequential elections, and we show that in this setting manipulation can be extremely complex even for election systems with simple winner problems. Yet we also show that for some of the most important election systems such manipulation is simple in certain settings. This suggests that when using sequential voting, one should pay great attention to the details of the setting in choosing ones voting rule. Among the highlights of our classifications are: We show that, depending on the size of the manipulative coalition, the online manipulation problem can be complete for each level of the polynomial hierarchy or even for PSPACE. We obtain the most dramatic contrast to date between the nonunique-winner and unique-winner models: Online weighted manipulation for plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-hard (destructive case) in the unique-winner model. And we obtain what to the best of our knowledge are the first PNP[1]-completeness and PNP-completeness results in the field of computational social choice, in particular proving such completeness for, respectively, the complexity of 3-candidate and 4-candidate (and unlimited-candidate) online weighted coalition manipulation of veto elections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا