ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a family of free fermion lattice models that have Dirac loops, closed lines of Dirac nodes in momentum space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic and multiply-connected Fermi surface leads to quantized Hall conductivities in three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those structures have topological surface states. We discuss the feasibility of realizing the structures as new allotropes of carbon.
129 - Bruno Uchoa , , Yafis Barlas 2012
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseu do-Landau levels are completely filled, whereas at partial fillings superconductivity survives at weak coupling. In the weak coupling limit, the critical temperature scales emph{linearly} with the coupling strength and shows a sequence of quantum critical points as a function of the filling factor that can be accessed experimentally. We argue that superconductivity can be induced by electron-phonon coupling and that the transition temperature can be controlled with the amount of strain and with the filling fraction of the Landau levels.
In this Letter, we derive an effective theory of graphene on a hexagonal Boron Nitride (h-BN) substrate. We show that the h-BN substrate generically opens a spectral gap in graphene despite the lattice mismatch. The origin of that gap is particularly intuitive in the regime of strong coupling between graphene and its substrate, when the low-energy physics is determined by the topology of a network of zero energy modes. For twisted graphene bilayers, where inversion symmetry is present, this network percolates through the system and the spectrum is gapless. The breaking of that symmetry by h-BN causes the zero energy modes to close into rings. The eigenstates of these rings hybridize into flat bands with gaps in between. The size of this band gap can be tuned by a gate voltage and it can reach the order of magnitude needed to confine electrons at room temperature.
We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by $alpha^{star}(mathbf{k},omega)equiv2.2/epsilon(mathbf{k},omega)$, where $epsilon(mathbf{k},omega)$ is the dynamical dielectric function. At long wavelengths, $alpha^{star}(mathbf{k},omega)$ appears to have its smallest value in the static regime, where $alpha^{star}(mathbf{k}to0,0)approx1/7$ according to recent inelastic x-ray measurements, and the largest value in the optical limit, where $alpha^{star}(0,omega)approx2.6$. We conclude that the strength of Coulomb interactions in graphene is not universal, but depends highly on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments.
In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference eff ects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where t he Kondo temperature scales as $T_{K}propto|J-J_{c}|^{1/3}$ near the critical coupling $J_{c}$, and the local spin is effectively screened by a emph{super-ohmic} bath. For this class, the RKKY interaction decays spatially with a fast power law $sim1/R^{7}$. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.
We examine theoretically the signatures of magnetic adatoms in graphene probed by scanning tunneling spectroscopy (STS). When the adatom hybridizes equally with the two graphene sublattices, the broadening of the local adatom level is anomalous and c an scale with the cube of the energy. In contrast to ordinary metal surfaces, the adatom local moment can be suppressed by the proximity of the probing scanning tip. We propose that the dependence of the tunneling conductance on the distance between the tip and the adatom can provide a clear signature for the presence of local magnetic moments. We also show that tunneling conductance can distinguish whether the adatom is located on top of a carbon atom or in the center of a honeycomb hexagon.
We perform Monte Carlo simulations to study the interplay of structural and magnetic order in single layer graphene covered with magnetic adatoms. We propose that the presence of ripples in the graphene structure can lead to clustering of the adatoms and to a variety of magnetic states such as super-paramagnetism, antiferromagnetism, ferromagnetism and spin glass behavior. We derive the magnetization hysteresis and also the magnetoresistance curves in the variable range hopping regime, which can provide experimental signatures for ripple induced clustering and magnetism. We propose that the magnetic states in graphene can be controlled by gate voltage and coverage fraction.
Comment on BCS superconductivity of Dirac fermions in graphene layers by N. B. Kopnin and E. B. Sonin [arXiv:0803.3772; Phys. Rev. Lett. 100, 246808 (2008)].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا