ﻻ يوجد ملخص باللغة العربية
In this Letter, we derive an effective theory of graphene on a hexagonal Boron Nitride (h-BN) substrate. We show that the h-BN substrate generically opens a spectral gap in graphene despite the lattice mismatch. The origin of that gap is particularly intuitive in the regime of strong coupling between graphene and its substrate, when the low-energy physics is determined by the topology of a network of zero energy modes. For twisted graphene bilayers, where inversion symmetry is present, this network percolates through the system and the spectrum is gapless. The breaking of that symmetry by h-BN causes the zero energy modes to close into rings. The eigenstates of these rings hybridize into flat bands with gaps in between. The size of this band gap can be tuned by a gate voltage and it can reach the order of magnitude needed to confine electrons at room temperature.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for d
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, for which the dielectric constants are the same in the basal plane (epsilon^t = epsilon^x = epsilon^y) but have opposite signs (epsilon^t*epsilon^z < 0) from that in the normal plane (e
We study the stability and electronic structure of magic-angle twisted bilayer graphene on the hexagonal boron nitride (TBG/BN). Full relaxation has been performed for commensurate supercells of the heterostructures with different twist angles ($thet
We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moire patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially impo