ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and PAH abundance, out to R=25kpc. The global dust m ass is M_d=5.4x10^7Msol, the global dust/H mass ratio is M_d/M_H=0.0081, and the global PAH abundance is <q_PAH>=0.039. The dust surface density has an inner ring at R=5.6kpc, a maximum at R=11.2kpc, and an outer ring at R=15.1kpc. The dust/gas ratio varies from M_d/M_H=0.026 at the center to ~0.0027 at R=25kpc. From the dust/gas ratio, we estimate the ISM metallicity to vary by a factor ~10, from Z/Zsol=3 at R=0 to ~0.3 at R=25kpc. The dust heating rate parameter <U> peaks at the center, with <U> approx 35, declining to <U> approx 0.25 at R=20kpc. Within the central kpc, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q_PAH=0.045 at R=11.2kpc. When allowance is made for the different spectrum of the bulge stars, q_PAH for the dust in the central kpc is similar to the overall value of q_PAH in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500um emission at R=2-6kpc, suggesting that at R=2-6kpc, the dust opacity varies more steeply with frequency (with beta approx 2.3 between 200 and 600um) than in the model
DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of target unit cells, allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for user-specified scattering directions. DDSCAT 7.3 can efficiently calculate E and B throughout a user-specified volume containing the target. This User Guide explains how to use DDSCAT 7.3 to carry out electromagnetic scattering calculations, including use of DDPOSTPROCESS, a Fortran-90 code to perform calculations with E and B at user-selected locations near the target. A number of changes have been made since the last release, DDSCAT 7.2 .
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا