ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop isometry and inversion formulas for the Segal--Bargmann transform on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of odd-dimensional spheres.
We consider a particle moving on a 2-sphere in the presence of a constant magnetic field. Building on earlier work in the nonmagnetic case, we construct coherent states for this system. The coherent states are labeled by points in the associated phas e space, the (co)tangent bundle of S^2. They are constructed as eigenvectors for certain annihilation operators and expressed in terms of a certain heat kernel. These coherent states are not of Perelomov type, but rather are constructed according to the complexifier approach of T. Thiemann. We describe the Segal--Bargmann representation associated to the coherent states, which is equivalent to a resolution of the identity.
Let G/K be a Riemannian symmetric space of the complex type, meaning that G is complex semisimple and K is a compact real form. Now let {Gamma} be a discrete subgroup of G that acts freely and cocompactly on G/K. We consider the Segal--Bargmann trans form, defined in terms of the heat equation, on the compact quotient {Gamma}G/K. We obtain isometry and inversion formulas precisely parallel to the results we obtained previously for globally symmetric spaces of the complex type. Our results are as parallel as possible to the results one has in the dual compact case. Since there is no known Gutzmer formula in this setting, our proofs make use of double coset integrals and a holomorphic change of variable.
100 - Brian C. Hall 2008
Let K be a connected compact semisimple Lie group and Kc its complexification. The generalized Segal-Bargmann space for Kc, is a space of square-integrable holomorphic functions on Kc, with respect to a K-invariant heat kernel measure. This space is connected to the Schrodinger Hilbert space L^2(K) by a unitary map, the generalized Segal-Bargmann transform. This paper considers certain natural operators on L^2(K), namely multiplication operators and differential operators, conjugated by the generalized Segal-Bargmann transform. The main results show that the resulting operators on the generalized Segal-Bargmann space can be represented as Toeplitz operators. The symbols of these Toeplitz operators are expressed in terms of a certain subelliptic heat kernel on Kc. I also examine some of the results from an infinite-dimensional point of view based on the work of L. Gross and P. Malliavin.
86 - Brian C. Hall 2007
Let (H,B) be an abstract Wiener space and let mu_{s} be the Gaussian measure on B with variance s. Let Delta be the Laplacian (*not* the number operator), that is, a sum of squares of derivatives associated to an orthonormal basis of H. I will show t hat the heat operator exp(tDelta/2) is a contraction operator from L^2(B,mu_{s} to L^2(B,mu_{s-t}), for all t<s. More generally, the heat operator is a contraction from L^p(B,mu_{s}) to L^q(B,mu_{s-t}) for t<s, provided that p and q satisfy (p-1)/(q-1) leq s/(s-t). I give two proofs of this result, both very elementary.
We consider the Segal-Bargmann transform for a noncompact symmetric space of the complex type. We establish isometry and surjectivity theorems for the transform, in a form as parallel as possible to the results in the compact case. The isometry theor em involves integration over a tube of radius R in the complexification, followed by analytic continuation with respect to R. A cancellation of singularities allows the relevant integral to have a nonsingular extension to large R, even though the function being integrated has singularities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا