ﻻ يوجد ملخص باللغة العربية
We consider a particle moving on a 2-sphere in the presence of a constant magnetic field. Building on earlier work in the nonmagnetic case, we construct coherent states for this system. The coherent states are labeled by points in the associated phase space, the (co)tangent bundle of S^2. They are constructed as eigenvectors for certain annihilation operators and expressed in terms of a certain heat kernel. These coherent states are not of Perelomov type, but rather are constructed according to the complexifier approach of T. Thiemann. We describe the Segal--Bargmann representation associated to the coherent states, which is equivalent to a resolution of the identity.
We investigate properties of generalized time-dependent q-deformed coherent states for a noncommutative harmonic oscillator. The states are shown to satisfy a generalized version of Heisenbergs uncertainty relations. For the initial value in time the
It is noted that the Poincare sphere for polarization optics contains the symmetries of the Lorentz group. The sphere is thus capable of describing the internal space-time symmetries dictated by Wigners little groups. For massive particles, the littl
We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration
In this first paper, we start the analysis of correlation functions of quantum spin chains with general integrable boundary conditions. We initiate these computations for the open XXX spin 1/2 quantum chains with some unparallel magnetic fields allow
The Casimir effect for a scalar field in presence of delta-type potentials has been investigated for a long time in the case of surface delta functions, modelling semi-transparent boundaries. More recently Albeverio, Cacciapuoti, Cognola, Spreafico a