ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emis sion which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R~0.9) which together with the relatively strong neutral Fe Kalpha emission line (EW ~ 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X-ray continuum is strongly obscured by an absorber with a column density of NH =2-3 x10^{23} cm^{-2}. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter logxi ~ 1.0 erg cm s^{-1}. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial disk-wind located within the parsec scale molecular torus.
PDS 456 is a nearby (z=0.184), luminous (L_bol ~10^47 erg/s) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant ab sorption features near 9 keV in the quasar rest--frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (~0.25c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (Nh>10^24cm^-2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of $4pi$ steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.
We discuss here a long Suzaku observation of IRAS 19254-7245 (also known as the Superantennae), one of the brightest and well studied Ultra Luminous Infrared Galaxies in the local Universe. This long observation provided the first detection of IRAS 1 9254-7245 above 10 keV, and measured a 15-30 keV flux of ~5x10^(-12) erg cm^-2 s^-1. The detection above 10 keV has allowed us to unveil, for the first time, the intrinsic luminosity of the AGN hosted in IRAS 19254-7245, which is strongly absorbed (Nh ~ 3x10^(24) cm^-2) and has an intrinsic luminosity in the QSO regime (L(2-10 keV) ~ 3 x 10^(44) erg s^-1). The 2-10 keV spectrum of IRAS 19254-7245 is remarkably hard (Gamma~1.2), and presents a strong iron line (EW ~0.7 keV), clearly suggesting that below 10 keV we are seeing only reprocessed radiation. Since the energy of the Fe K emission is found to be at ~6.7 keV, consistent with He-like Fe, and its EW is too high to be explained in a starburst dominated scenario, we suggest that the 2--10 keV emission of IRAS 19254-7245 is dominated by reflection/scattering from highly ionized matter. Indeed, within this latter scenario we found that the photon index of the illuminating source is Gamma=1.87 (+0.11,-0.28), in excellent agreement with the mean value found for radio quiet unobscured AGN.
We present the results of the simultaneous deep XMM and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron K-alpha line. The time averaged sp ectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60 eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW ~ 50 eV. Its profile is well described by an emission line originating from an accretion disk viewed with an inclination angle ~ 40^circ and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant in time within the errors. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with Fe XXVI Ly-alpha this absorption is indicative of a possibly variable, high ionization, high velocity outflow. The variability of this absorption feature appears to rule out a local (z=0) origin. The analysis of the XMM RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet is consistent with a scenario where the soft X-ray emission lines are produced in a plasma photoionized by the nuclear emission.
187 - R. M. Sambruna 2007
We present the results of the analysis of an archival 15 ks XMM-Newton observation of the nearby (z=0.057) radio-loud source 3C445, optically classified as a Broad-Line Radio Galaxy. While the RGS data are of insufficient quality to allow a meaningfu l analysis, the EPIC data show a remarkable X-ray spectrum. The 2-10 keV continuum is described by a heavily absorbed (Nh~ 1e22 - 1e23 cm-2) power law with photon index Gamma ~1.4, and strong (R~2) cold reflection. A narrow, unresolved Fe Kalpha emission line is detected, confirming previous findings, with EW 120eV. A soft excess is present below 2 keV over the extrapolation of the hard X-ray power law, which we model with a power law with the same photon index as the hard power law, absorbed by a column density Nh=6e20 cm-2 in excess to Galactic. A host of emission lines are present below 2 keV, confirming previous indications from ASCA, due to H- and He-like O, Mg, and Si. We attribute the origin of the lines to a photoionized gas, with properties very similar to radio-quiet obscured AGN. Two different ionized media, or a single stratified medium, are required to fit the soft X-ray data satisfactorily. The similarity of the X-ray spectrum of 3C445 to Seyferts underscores that the central engines of radio-loud and radio-quiet AGN similarly host both cold and warm gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا