ﻻ يوجد ملخص باللغة العربية
We present the results of the simultaneous deep XMM and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron K-alpha line. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60 eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW ~ 50 eV. Its profile is well described by an emission line originating from an accretion disk viewed with an inclination angle ~ 40^circ and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant in time within the errors. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with Fe XXVI Ly-alpha this absorption is indicative of a possibly variable, high ionization, high velocity outflow. The variability of this absorption feature appears to rule out a local (z=0) origin. The analysis of the XMM RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet is consistent with a scenario where the soft X-ray emission lines are produced in a plasma photoionized by the nuclear emission.
We report on a 100 ks Suzaku observation of the bright, nearby (z=0.008486) Seyfert 1.9 galaxy MCG -5-23-16. The broad-band (0.4-100 keV) X-ray spectrum allows us to determine the nature of the high energy emission with little ambiguity. The X-ray co
MCG-5-23-16 was targeted in early 2015 with a half mega-seconds observing campaign using NuSTAR. Here we present the spectral analysis of these datasets along with an earlier observation and study the relativistic reflection and the primary coronal s
X-ray reverberation mapping has emerged as a new tool to probe accretion in AGN, providing a potentially powerful probe of accretion at the black hole scale. The lags, along with relativistic spectral signatures are often interpreted in light of the
I report the discovery of a prominent broad and asymmetrical feature near 6.4 keV in the Seyfert 1 MCG-02-14-009 (z=0.028) with XMM-Newton/EPIC. The present short X-ray observation (PN net exposure time ~5 ks) is the first one above 2 keV for MCG-02-
The Seyfert 1.9 galaxy MCG-05-23-016 has been shown to exhibit a complex X-ray spectrum. This source has moderate X-ray luminosity, hosts a comparably low-mass black hole, but accretes at a high Eddington rate, and allows us to study a super massive