ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a prelim inary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.
The spatial and temporal relationships between stellar age, kinematics, and chemistry are a fundamental tool for uncovering the physics driving galaxy formation and evolution. Observationally, these trends are derived using carefully selected samples isolated via the application of appropriate magnitude, colour, and gravity selection functions of individual stars; conversely, the analysis of chemodynamical simulations of galaxies has traditionally been restricted to the age, metallicity, and kinematics of `composite stellar particles comprised of open cluster-mass simple stellar populations. As we enter the Gaia era, it is crucial that this approach changes, with simulations confronting data in a manner which better mimics the methodology employed by observers. Here, we use the textsc{SynCMD} synthetic stellar populations tool to analyse the metallicity distribution function of a Milky Way-like simulated galaxy, employing an apparent magnitude plus gravity selection function similar to that employed by the RAdial Velocity Experiment (RAVE); we compare such an observationally-motivated approach with that traditionally adopted - i.e., spatial cuts alone - in order to illustrate the point that how one analyses a simulation can be, in some cases, just as important as the underlying sub-grid physics employed.
We present an analysis of the role of feedback in shaping the neutral hydrogen (HI) content of simulated disc galaxies. For our analysis, we have used two realisations of two separate Milky Way-like (~L*) discs - one employing a conservative feedback scheme (MUGS), the other significantly more energetic (MaGICC). To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred HI distribution; construct power spectra associated with the underlying structure of the simulated cold ISM, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from THINGS (The HI Nearby Galaxy Survey). Single power-law fits (P~k^gamma) to the power spectra of the stronger-feedback (MaGICC) runs (over spatial scales corresponding to 0.5 kpc to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma = -2.5). The weaker-feedback (MUGS) runs exhibit shallower power law slopes (gamma = -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e., gamma = -1.4 for scales in excess of 2 kpc) and a steeper slope on scales below 1 kpc (gamma = -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial HI surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs.
We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in sup port of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory. We made use of a suite of L* discs, realised with and without `enhanced feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z~2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system. The `enhanced feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively `flat and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks at [O/Fe]=-0.05 and +0.05 (for stars with [Fe/H]>-1), consistent with our earlier work on dwarf discs. Our results with `enhanced feedback are inconsistent with our earlier generation of simulations realised with `conservative feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes.
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of it s colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.
We examine the properties and evolution of a simulated polar disc galaxy. This galaxy is comprised of two orthogonal discs, one of which contains old stars (old stellar disc), and the other, containing both younger stars and the cold gas (polar disc) of the galaxy. By exploring the shape of the inner region of the dark matter halo, we are able to confirm that the halo shape is a oblate ellipsoid flattened in the direction of the polar disc. We also note that there is a twist in the shape profile, where the innermost 3 kpc of the halo flattens in the direction perpendicular to the old disc, and then aligns with the polar disc out until the virial radius. This result is then compared to the halo shape inferred from the circular velocities of the two discs. We also use the temporal information of the simulation to track the systems evolution, and identify the processes which give rise to this unusual galaxy type. We confirm the proposal that the polar disc galaxy is the result of the last major merger, where the angular moment of the interaction is orthogonal to the angle of the infalling gas. This merger is followed by the resumption of coherent gas infall. We emphasise that the disc is rapidly restored after the major merger and that after this event the galaxy begins to tilt. A significant proportion of the infalling gas comes from filaments. This infalling gas from the filament gives the gas its angular momentum, and, in the case of the polar disc galaxy, the direction of the gas filament does not change before or after the last major merger.
We examine the chemical properties of 5 cosmological hydrodynamical simulations of an M33-like disc galaxy which have been shown to be consistent with the morphological characteristics and bulk scaling relations expected of late-type spirals. These s imulations are part of the Making Galaxies In a Cosmological Context (MaGICC) Project, in which stellar feedback is tuned to match the stellar mass -- halo mass relationship. Each realisation employed identical initial conditions and assembly histories, but differed from one another in their underlying baryonic physics prescriptions, including (a) the efficiency with which each supernova energy couples to the ISM, (b) the impact of feedback associated with massive star radiation pressure, (c) the role of the minimum shut-off time for radiative cooling of Type II SNe remnants, (d) the treatment of metal diffusion, and (e) varying the IMF. Our analysis focusses on the resulting stellar metallicity distribution functions (MDFs) in each simulated (analogous) `solar neighbourhood and central `bulge region. We compare the simulated MDFs skewness, kurtosis, and dispersion (inter-quartile, inter-decile, inter-centile, and inter-tenth-percentile regions) with that of the empirical solar neighbourhood MDF and Local Group dwarfs. We find that the MDFs of the simulated discs are more negatively skewed, with higher kurtosis, than those observed locally. We can trace this difference to the simulations tight and correlated age-metallicity relations (compared with that of the Milky Way), suggesting that these relations within `dwarf discs might be steeper than in L* discs and/or the degree of stellar orbital re-distribution and migration inferred locally has not been captured in their entirety, at the resolution of our simulations. The important role of metal diffusion in ameliorating the over-production of extremely metal-poor stars is highlighted.
We highlight two research strands related to our ongoing chemodynamical Galactic Archaeology efforts: (i) the spatio-temporal infall rate of gas onto the disk, drawing analogies with the infall behaviour imposed by classical galactic chemical evoluti on models of inside-out disk growth; (ii) the radial age gradient predicted by spectrophometric models of disk galaxies. In relation to (i), at low-redshift, we find that half of the infall onto the disk is gas associated with the corona, while half can be associated with cooler gas streams; we also find that gas enters the disk preferentially orthogonal to the system, rather than in-plane. In relation to (ii), we recover age gradient troughs/inflections consistent with those observed in nature, without recourse to radial migrations.
We examine the distribution of young stars associated with the spiral arms of a simulated L* cosmological disk galaxy. We find age patterns orthogonal to the arms which are not inconsistent with the predictions of classical density wave theory, a vie w further supported by recent observations of face-on Grand Design spirals such as M51. The distribution of metals within a simulated ~0.1L* disk is presented, reinforcing the link between star formation, the age-metallicity relation, and the metallicity distribution function.
We examine radial and vertical metallicity gradients using a suite of disk galaxy simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient and reconcile differences between extant models an d observations within the `inside-out disk growth paradigm. A sample of 25 disks is used, consisting of 19 from our RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE, alongside disks from Rahimi et al. (GCD+) and Kobayashi & Nakasato (GRAPE-SPH). Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. We find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical `inside-out growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z=1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا