ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an experimental protocol to study $p$-wave superfluidity in a spin-polarized cold Fermi gas tuned by an $s$-wave Feshbach resonance. A crucial ingredient is to add a quasi-1D optical lattice and tune the fillings of two spins to the $s$ an d $p$ band, respectively. The pairing order parameter is confirmed to inherit $p$-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected $pi$-phase modulation in a broad parameter regime. Measurable quantities are calculated, including time-of-flight distributions, radio-frequency spectra, and in situ phase-contrast imaging in an external trap. The $pi$-phase $p$-wave superfluid is reminiscent of the $pi$-state in superconductor-ferromagnet heterostructures but differs in symmetry and origin. If observed, it would represent another example of $p$-wave pairing, first discovered in He-3 liquids.
Topological phases like topological insulators or superconductors are fascinating quantum states of matter, featuring novel properties such as emergent chiral edge states or Majorana fermions with non-Abelian braiding statistics. The recent experimen tal implementation of optical lattices with highly tunable geometry in cold gases opens up a new thrust on exploring these novel quantum states. Here we report that the topological non-trivial Bloch bands can arise naturally in a noncentrosymmetric lattice. It induces a controllable orbital hybridization, producing the topological band structure. In such bands, when considering attractive fermionic atoms, we find a topological Fulde-Ferrell superfluid state with finite center-of-mass momentum in the presence of onsite rotation. This topological superfluid supports Majorana fermions on its edges. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy.
Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+to J/psi pi^+$ and $B^+to J/psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{rm T} < 20~{rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683pm0.018pm0.009)%$, where the first uncertainty is statistical and the second systematic.
245 - Bo Liu , Xiaopeng Li , Lan Yin 2014
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temper ature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a rotating external field that generates a direction-dependent two-body effective attraction. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases.
The production cross-sections of B mesons are measured in pp collisions at a centre-of-mass energy of 7 TeV, using data collected with the LHCb detector corresponding to a integrated luminosity of 0.36 fb-1. The B+, B0 and Bs0 mesons are reconstructe d in the exclusive decays B+ -> J/psi K+, B0 -> J/psi K*0 and Bs0 -> J/psi phi, with J/psi -> mu+ mu-, K*0 -> K+ pi- and phi -> K+ K-. The differential cross-sections are measured as functions of B meson transverse momentum pT and rapidity y, in the range 0 < pT < 40 GeV/c and 2.0 < y < 4.5. The integrated cross-sections in the same pT and y ranges, including charge-conjugate states, are measured to be sigma(pp -> B+ + X) = 38.9 +- 0.3 (stat.) +- 2.5 (syst.) +- 1.3 (norm.) mub, sigma(pp -> B0 + X) = 38.1 +- 0.6 (stat.) +- 3.7 (syst.) +- 4.7 (norm.) mub, sigma(pp -> Bs0 + X) = 10.5 +- 0.2 (stat.) +- 0.8 (syst.) +- 1.0 (norm.) mub, where the third uncertainty arises from the pre-existing branching fraction measurements.
The production of B+- mesons in proton-proton collisions at sqrt(s)=7 TeV is studied using 35 pb-1 of data collected by the LHCb detector. The B+- mesons are reconstructed exclusively in the B+- -> J/psi K+- mode, with J/psi -> mu+ mu-. The different ial production cross-section is measured as a function of the B+- transverse momentum in the fiducial region 0 < pT < 40 GeV/c and with rapidity 2.0 < y < 4.5. The total cross-section, summing up B+ and B-, is measured to be sigma(pp -> B+- X, 0 < pT < 40 GeV/c, 2.0 < y < 4.5) = 41.4 +- 1.5 (stat.) +- 3.1 (syst.) mub.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا