ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting $pi$-phase superfluids with $p$-wave symmetry in a quasi-1D optical lattice

52   0   0.0 ( 0 )
 نشر من قبل Bo Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an experimental protocol to study $p$-wave superfluidity in a spin-polarized cold Fermi gas tuned by an $s$-wave Feshbach resonance. A crucial ingredient is to add a quasi-1D optical lattice and tune the fillings of two spins to the $s$ and $p$ band, respectively. The pairing order parameter is confirmed to inherit $p$-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected $pi$-phase modulation in a broad parameter regime. Measurable quantities are calculated, including time-of-flight distributions, radio-frequency spectra, and in situ phase-contrast imaging in an external trap. The $pi$-phase $p$-wave superfluid is reminiscent of the $pi$-state in superconductor-ferromagnet heterostructures but differs in symmetry and origin. If observed, it would represent another example of $p$-wave pairing, first discovered in He-3 liquids.


قيم البحث

اقرأ أيضاً

We study the role of the Dipolar-Induced Resonance (DIR) in a quasi-one-dimensional system of ultracold bosons. We first describe the effect of the DIR on two particles in a harmonic trap. Then, we consider a deep optical lattice loaded with ultracol d dipolar bosons. In order to describe this system, we introduce a novel atom-dimer extended Bose-Hubbard model, which is the minimal model correctly accounting for the DIR. We analyze the impact of the DIR on the phase diagram at T=0 by exact diagonalization of a small-sized system. We show that the DIR strongly affects this phase diagram. In particular, we predict the mass density wave to occur in a narrow domain corresponding to weak nearest-neighbor interactions, and the occurrence of a collapse phase for stronger dipolar interactions.
We show that recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological $p$-wave superfluid of microwave-dressed polar molec ules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer $p$-wave superfluid of polar molecules in a bilayer geometry.
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding in the topologically non-trivial bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system.
Disorder and localization have dramatic influence on the topological properties of a quantum system. While strong disorder can close the band gap thus depriving topological materials of topological features, disorder may also induce topology from tri vial band structures, wherein topological invariants are shared by completely localized states in real space. Here we experimentally investigate a fundamentally distinct scenario where a topological phase is identified in a critically localized regime, with eigenstates neither fully extended nor completely localized. Adopting the technique of momentum-lattice engineering for ultracold atoms, we implement a one-dimensional, generalized Aubry-Andre model with off-diagonal quasi-periodic disorder in momentum space, and characterize its localization and topological properties through dynamic observables. We then demonstrate the impact of interactions on the critically localized topological state, as a first experimental endeavour toward the clarification of many-body critical phase, the critical analogue of the many-body localized state.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa me site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا