ترغب بنشر مسار تعليمي؟ اضغط هنا

129 - B.H.C. Emonts 2015
In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (`wet) merger associated with a powerful radio galaxy at a redshift of z~2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the southern hemisphere. Using the Australia Telescope Compact Array, we obtained high-resolution CO(1-0) data of cold molecular gas, which we complement with HST/WFPC2 imaging and WHT long-slit spectroscopy. We find that, while roughly M(H2) ~ 2 x 10$^{10}$ M$_{odot}$ of molecular gas coincides with the central host galaxy, another M(H2) ~ 3 x 10$^{10}$ M$_{odot}$ is spread across a total extent of ~60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HST/WFPC2 imaging. Ly$alpha$ emission shows an excess over HeII, but a deficiency over L(IR), which is likely the result of photo-ionisation by enhanced but very obscured star formation that was triggered by the merger. In terms of feedback, the radio source is aligned with widespread CO(1-0) emission, which suggests that there is a physical link between the propagating radio jets and the presence of cold molecular gas on scales of the galaxys halo. Its optical appearance, combined with the transformational stage at which we witness the evolution of MRC 0152-209, leads us to adopt the name `Dragonfly Galaxy.
67 - Bjorn Emonts 2014
The nuclei of merging galaxies are often deeply buried in dense layers of gas and dust. In these regions, gas outflows driven by starburst and AGN activity are believed to play a crucial role in the evolution of these galaxies. However, to fully unde rstand this process it is essential to resolve the morphology and kinematics of such outflows. Using near-IR integral-field spectroscopy obtained with VLT/SINFONI, we detect a kpc-scale structure of high-velocity molecular hydrogen (H2) gas associated with the deeply buried secondary nucleus of the IR-luminous merger NGC3256. We show that this structure is likely the hot component of a molecular outflow, which is detected also in the cold molecular gas by Sakamoto et al. This outflow, with a molecular gas mass of M(H2)~2x10^7 Msun, is among the first to be spatially resolved in both the hot H2 gas with VLT/SINFONI and the cold CO-emitting gas with ALMA. The hot and cold components share a similar morphology and kinematics, with a hot-to-cold molecular gas mass ratio of ~6x10^-5. The high (~100 pc) resolution at which we map the geometry and velocity structure of the hot outflow reveals a biconical morphology with opening angle ~40 deg and gas spread across a FWZI~1200 km/s. Because this collimated outflow is oriented close to the plane of the sky, the molecular gas may reach maximum intrinsic outflow velocities of ~1800 km/s, with an average mass outflow rate of at least ~20 Msun/yr. By modeling the line-ratios of various near-IR H2 transitions, we show that the H2 gas in the outflow is heated through shocks or X-rays to a temperature of ~1900K. The energy needed to drive the outflow is likely provided by a hidden Compton-thick AGN or by the nuclear starburst. We show that the global kinematics of the molecular outflow in NGC3256 mimic those of CO-outflows that have been observed at low spatial resolution in starburst- and active galaxies.
392 - B.H.C. Emonts 2013
We present a CO(1-0) survey for cold molecular gas in a representative sample of 13 high-z radio galaxies (HzRGs) at 1.4<z<2.8, using the Australia Telescope Compact Array. We detect CO(1-0) emission associated with five sources: MRC 0114-211, MRC 01 52-209, MRC 0156-252, MRC 1138-262 and MRC 2048-272. The CO(1-0) luminosities are in the range $L_{rm CO} sim (5 - 9) times 10^{10}$ K km/s pc$^{2}$. For MRC 0152-209 and MRC 1138-262 part of the CO(1-0) emission coincides with the radio galaxy, while part is spread on scales of tens of kpc and likely associated with galaxy mergers. The molecular gas mass derived for these two systems is M$_{rm H2} sim 6 times 10^{10}, {rm M}_{odot}$ (M$_{rm H2}$/$L_{rm CO}$=0.8). For the remaining three CO-detected sources, the CO(1-0) emission is located in the halo (~50-kpc) environment. These three HzRGs are among the fainter far-IR emitters in our sample, suggesting that similar reservoirs of cold molecular halo gas may have been missed in earlier studies due to pre-selection of IR-bright sources. In all three cases the CO(1-0) is aligned along the radio axis and found beyond the brightest radio hot-spot, in a region devoid of 4.5$mu$m emission in Spitzer imaging. The CO(1-0) profiles are broad, with velocity widths of ~ 1000 - 3600 km/s. We discuss several possible scenarios to explain these halo reservoirs of CO(1-0). Following these results, we complement our CO(1-0) study with detections of extended CO from the literature and find at marginal statistical significance (95% level) that CO in HzRGs is preferentially aligned towards the radio jet axis. For the eight sources in which we do not detect CO(1-0), we set realistic upper limits of $L_{rm CO} sim 3-4 times 10^{10}$ K km/s pc$^{2}$. Our survey reveals a CO(1-0) detection rate of 38%, allowing us to compare the CO(1-0) content of HzRGs with that of other types of high-z galaxies.
108 - B.H.C. Emonts 2013
The high-redshift radio galaxy MRC 1138-262 (`Spiderweb Galaxy; z = 2.16), is one of the most massive systems in the early Universe and surrounded by a dense `web of proto-cluster galaxies. Using the Australia Telescope Compact Array, we detected CO( 1-0) emission from cold molecular gas -- the raw ingredient for star formation -- across the Spiderweb Galaxy. We infer a molecular gas mass of M(H2) = 6x10^10 M(sun) (for M(H2)/L(CO)=0.8). While the bulk of the molecular gas coincides with the central radio galaxy, there are indications that a substantial fraction of this gas is associated with satellite galaxies or spread across the inter-galactic medium on scales of tens of kpc. In addition, we tentatively detect CO(1-0) in the star-forming proto-cluster galaxy HAE 229, 250 kpc to the west. Our observations are consistent with the fact that the Spiderweb Galaxy is building up its stellar mass through a massive burst of widespread star formation. At maximum star formation efficiency, the molecular gas will be able to sustain the current star formation rate (SFR ~ 1400 M(sun)/yr, as traced by Seymour et al.) for about 40 Myr. This is similar to the estimated typical lifetime of a major starburst event in infra-red luminous merger systems.
We report the detection of molecular CO(1-0) gas in the high-z radio galaxy MRC 0152-209 (z = 1.92) with the Australia Telescope Compact Array Broadband Backend (ATCA/CABB). This is the third known detection of CO(1-0) in a high-z radio galaxy to dat e. CO(1-0) is the most robust tracer of the overall molecular gas content (including the wide-spread, low-density and subthermally excited component), hence observations of CO(1-0) are crucial for studying galaxy evolution in the Early Universe. We derive L(CO) = (6.6 +- 2.0) x 10^10 K km/s pc^2 for MRC 0152-209, which is comparable to that derived from CO(1-0) observations of several high-z submillimetre and starforming BzK galaxies. The CO(1-0) traces a total molecular hydrogen mass of M(H2) = 5 x 10^10 (alpha_x/0.8) Msun. MRC 0152-209 is an infra-red bright radio galaxy, in which a large reservoir of cold molecular gas has not (yet) been depleted by star formation or radio source feedback. Its compact radio source is reliably detected at 40 GHz and has a steep spectral index of alpha = -1.3 between 1.4 and 40 GHz (4-115 GHz in the galaxys rest-frame). MRC 0152-209 is part of an ongoing systematic ATCA/CABB survey of CO(1-0) in high-z radio galaxies between 1.7 < z < 3.
59 - B. H. C. Emonts 2011
We present the first 7-millimetre observations of two high-redshift, Lya-bright radio galaxies (MRC 2104-242 and MRC 0943-242) performed with the 2 x 2 GHz instantaneous bandwidth of the Compact Array Broadband Backend (CABB) at the Australia Telesco pe Compact Array (ATCA). The aim was to search for 12CO(1-0) emission in these systems and test the millimetre capabilities of CABB for performing spectral line observations at high redshifts. We show that the stable band and enhanced velocity coverage of CABB, combined with hybrid array configurations, provide the ATCA with excellent 7-mm capabilities that allow reliable searches for the ground transition of CO at high redshifts. In this paper we explicitly discuss the calibration procedures used to reach our results. We set a firm upper limit to the mass of molecular gas in MRC 2104-242 (z = 2.5) of M(H2) < 2 x 10^10 (alpha_x/0.8) M_sun. For MRC 0943-242 (z=2.9) we derive an upper limit of M(H2) < 6 x 10^10 (alpha_x/0.8) M_sun. We also find a tentative 3-sigma CO detection in the outer part of the giant Lya halo that surrounds MRC 0943-242. The 30-33 GHz radio continuum of MRC 2104-242 and MRC 0943-242 is reliably detected. Both radio sources show a spectral index of alpha ~ -1.5 between 1.4 and 30 GHz, with no evidence for spectral curvature within this range of frequencies.
65 - B. H. C. Emonts 2010
An important aspect of solving the long-standing question as to what triggers various types of Active Galactic Nuclei involves a thorough understanding of the overall properties and formation history of their host galaxies. This is the second in a se ries of papers that systematically study the large-scale properties of cold neutral hydrogen (HI) gas in nearby radio galaxies. The main goal is to investigate the importance of gas-rich galaxy mergers and interactions among radio-loud AGN. In this paper we present results of a complete sample of classical low-power radio galaxies. We find that extended Fanaroff & Riley type-I radio sources are generally not associated with gas-rich galaxy mergers or ongoing violent interactions, but occur in early-type galaxies without large (> 10^8 M_sun) amounts of extended neutral hydrogen gas. In contrast, enormous discs/rings of HI gas (with sizes up to 190 kpc and masses up to 2 x 10^10 M_sun) are detected around the host galaxies of a significant fraction of the compact radio sources in our sample. This segregation in HI mass with radio source size likely indicates that these compact radio sources are either confined by large amounts of gas in the central region, or that their fuelling is inefficient and different from the fuelling process of classical FR-I radio sources. To first order, the overall HI properties of our complete sample (detection rate, mass and morphology) appear similar to those of radio-quiet early-type galaxies. If confirmed by better statistics, this would imply that low-power radio-AGN activity may be a short and recurrent phase that occurs at some point during the lifetime of many early-type galaxies.
We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper we use HI observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the Active Galactic Nucleus and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [OIII] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely HI-rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio-AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.
84 - B.H.C. Emonts 2008
We present the detection of an enormous disc of cool neutral hydrogen (HI) gas surrounding the S0 galaxy NGC 612, which hosts one of the nearest powerful radio sources (PKS 0131-36). Using the Australia Telescope Compact Array, we detect M_HI = 1.8 x 10^9 M_sun of HI emission-line gas that is distributed in a 140 kpc wide disc-like structure along the optical disc and dust-lane of NGC 612. The bulk of the gas in the disc appears to be settled in regular rotation with a total velocity range of 850 km/s, although asymmetries in this disc indicate that perturbations are being exerted on part of the gas, possibly by a number of nearby companions. The HI disc in NGC 612 suggests that the total mass enclosed by the system is M_enc ~ 2.9 x 10^12 sin^-2(i) M_sun, implying that this early-type galaxy contains a massive dark matter halo. We also discuss an earlier study by Holt et al. that revealed the presence of a prominent young stellar population at various locations throughout the disc of NGC 612, indicating that this is a rare example of an extended radio source that is hosted by a galaxy with a large-scale star-forming disc. In addition, we map a faint HI bridge along a distance of 400 kpc in between NGC 612 and the gas-rich (M_HI = 8.9 x 10^9 M_sun) barred galaxy NGC 619, indicating that likely an interaction between both systems occurred. From the unusual amounts of HI gas and young stars in this early-type galaxy, in combination with the detection of a faint optical shell and the systems high infra-red luminosity, we argue that either ongoing or past galaxy interactions or a major merger event are a likely mechanism for the triggering of the radio source in NGC 612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies. --abridged--
41 - Bjorn Emonts 2008
We present results of a study of large-scale neutral hydrogen (HI) gas in nearby radio galaxies. We find that the early-type host galaxies of different types of radio sources (compact, FR-I and FR-II) appear to contain fundamentally different large-s cale HI properties: enormous regular rotating disks and rings are present around the host galaxies of a significant fraction of low power compact radio sources, while no large-scale HI is detected in low power, edge-darkened FR-I radio galaxies. Preliminary results of a study of nearby powerful, edge-brightened FR-II radio galaxies show that these systems generally contain significant amounts of large-scale HI, often distributed in tail- or bridge-like structures, indicative of a recent galaxy merger or collision. Our results suggest that different types of radio galaxies may have a different formation history, which could be related to a difference in the triggering mechanism of the radio source. If confirmed by larger studies with the next generation radio telescopes, this would be in agreement with previous optical studies that suggest that powerful FR-II radio sources are likely triggered by galaxy mergers and collisions, while the lower power FR-I sources are fed in other ways (e.g. through the accretion of hot IGM). The giant HI disks/rings associated with some compact sources could - at least in some cases - be the relics of much more advanced mergers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا