ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold gas & mergers: fundamental difference in HI properties of different types of radio galaxies?

41   0   0.0 ( 0 )
 نشر من قبل Bjorn Emonts
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bjorn Emonts




اسأل ChatGPT حول البحث

We present results of a study of large-scale neutral hydrogen (HI) gas in nearby radio galaxies. We find that the early-type host galaxies of different types of radio sources (compact, FR-I and FR-II) appear to contain fundamentally different large-scale HI properties: enormous regular rotating disks and rings are present around the host galaxies of a significant fraction of low power compact radio sources, while no large-scale HI is detected in low power, edge-darkened FR-I radio galaxies. Preliminary results of a study of nearby powerful, edge-brightened FR-II radio galaxies show that these systems generally contain significant amounts of large-scale HI, often distributed in tail- or bridge-like structures, indicative of a recent galaxy merger or collision. Our results suggest that different types of radio galaxies may have a different formation history, which could be related to a difference in the triggering mechanism of the radio source. If confirmed by larger studies with the next generation radio telescopes, this would be in agreement with previous optical studies that suggest that powerful FR-II radio sources are likely triggered by galaxy mergers and collisions, while the lower power FR-I sources are fed in other ways (e.g. through the accretion of hot IGM). The giant HI disks/rings associated with some compact sources could - at least in some cases - be the relics of much more advanced mergers.

قيم البحث

اقرأ أيضاً

We analyze line-of-sight atomic hydrogen (HI) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array - ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The HI Nearby Galaxy Survey (THINGS) to trace regions containing cold ( T $lesssim$ 1400 K) HI from observations with a uniform linear scale of 200 pc/beam. Our galaxy sample spans four orders of magnitude in total HI mass and nine magnitudes in M_B. We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low dispersion (<6 km/s) component of the spectrum. Most HI spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km/s. Cold HI is found in 23 of 27 (~85%) galaxies after a reduction of the sample size due to quality control cuts. The cold HI contributes ~20% of the total line-of-sight flux when found with warm HI. Spectra best fit by a single Gaussian, but dominated by cold HI emission (i.e., have velocity dispersions <6 km/s) are found primarily beyond the optical radius of the host galaxy. The cold HI is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global HI distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total HI gas of only a few percent in each galaxy.
By using Data Analysis Pipeline (DAP) products of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), which are publicly available from the SDSS Data Release 15, we analyze the local properties at the SN explosion sites and global properties of different types of SN host galaxies to explore the explosion environments of different types of SNe. In our sample, there are 67 SN host galaxies in the field of view of MaNGA, including 32 Type Ia, 29 CCSNe, 1 super-luminous SN (SLSN), 1 Type I and 4 unclassified type of SNe, with which we can perform the K-S test for analysis and derive statistically robust results. Due to the limited sample size, we couldnt remove the mass dependence in this work, which is likely the true driver of the trends for the properties presented in this work. The global star formation rate (SFR) and EW(H$alpha$) for SN Ia hosts is slightly lower than that for CCSN hosts on average. SN Ia host galaxies are $sim$ 0.3 dex more massive than CCSN hosts, which implies that the number ratio of CCSNe to Type Ia SNe will decrease with the increasing of stellar mass of host galaxies. The stellar population age of SN Ia host galaxies is older than that of CCSN hosts on average. There is no significant difference between different types of SN hosts for some properties, including local SFR density ($Sigma rm SFR$), local and global gas-phase oxygen abundance. For most galaxies in our sample, the global gas-phase oxygen abundance estimated from the integrated spectra of SN hosts can represent the local gas-phase oxygen abundance at the SN explosion sites with small bias.
65 - F. Calura 2008
We study interstellar dust evolution in various environments by means of chemical evolution models for galaxies of different morphological types. We start from the formalism developed by Dwek (1998) to study dust evolution in the solar neighbourhood and extend it to ellipticals and dwarf irregular galaxies, showing how the evolution of the dust production rates and of the dust fractions depend on the galactic star formation history. The observed dust fractions observed in the solar neighbourhood can be reproduced by assuming that dust destruction depends the condensation temperatures T_c of the elements. In elliptical galaxies, type Ia SNe are the major dust factories in the last 10 Gyr. With our models, we successfully reproduce the dust masses observed in local ellipticals (~10^6 M_sun) by means of recent FIR and SCUBA observations. We show that dust is helpful in solving the iron discrepancy observed in the hot gaseous halos surrounding local ellipticals. In dwarf irregulars, we show how a precise determination of the dust depletion pattern could be useful to put solid constraints on the dust condensation efficiencies. Our results will be helpful to study the spectral properties of dust grains in local and distant galaxies.
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit h $|v_{rm LSR}| < 25 $ kms$^{-1}$ on angular scales of 11 to 16. Unsharp masking (USM) is applied to extract small scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes $|b|>20^circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{rm HI} simeq 10^{19.1},{rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{rm HI} simeq 10^{20} {rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{rm tot} = (6.0 pm 1.8)mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is in the range $ 14 < n < 47 {rm cm^{-3}}$.
Post-starburst galaxies are typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molec ular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses of ~10$^9$ M$_{odot}$, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing ~90 per cent of its star-forming interstellar medium in only ~600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation, due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا