ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Bing Shen , Huan Yang , Bin Zeng 2011
Magnetization and its relaxation have been measured on Ba0.6K0.4Fe2As2 single crystals with Tc = 39 K. The magnetization hysteresis loops (MHLs) exhibit flux jumps in the low temperature region, and a second peak-effect in the intermediate temperatur e region, especially when the field sweeping rate is low. Interestingly a third magnetization peak can be easily observed on the MHLs in the high temperature region. Further analysis find that the first magnetization peak is very sharp, which is associated with the strong vortex pinning. However the first dip of the MHL corresponds to a moderate relaxation rate, then a second peak appears accompanied by a vanishing vortex motion. Finally a third magnetization peak emerges and the vortex motion becomes drastic beyond this threshold. The novel features accompanying the second magnetization peak suggest a new type of vortex phase transition.
Resistivity, Hall effect and magnetoresistance have been investigated systematically on single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ranging from undoped to optimally doped regions. A systematic evolution of the quasiparticle scattering has been ob served. It is found that the resistivity in the normal state of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ is insensitive to the potassium doping concentration, which is very different from the electron doped counterpart Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$, where the resistivity at 300 K reduces to half value of the undoped one when the system is optimally doped. In stark contrast, the Hall coefficient R$_H$ changes suddenly from a negative value in the undoped sample to a positive one with slight K-doping, and it keeps lowering with further doping. We interpret this dichotomy due to the asymmetric scattering rate in the hole and the electron pockets with much higher mobility of the latter. The magnetoresistivity shows also a non-monotonic doping dependence indicating an anomalous feature at about 80 K to 100 K, even in the optimally doped sample, which is associated with a possible pseudogap feature. In the low temperature region, it seems that the resistivity has the similar values when superconductivity sets in disregarding the different T$_c$ values, which indicates a novel mechanism of the superconductivity. A linear feature of resistivity $rho_{ab}$ vs. $T$ was observed just above $T_c$ for the optimally doped sample, suggesting a quantum criticality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا