ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Magnetization Peaks and New Type of Vortex Phase Transitions in Ba0.6K0.4Fe2As2

80   0   0.0 ( 0 )
 نشر من قبل Bing Shen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetization and its relaxation have been measured on Ba0.6K0.4Fe2As2 single crystals with Tc = 39 K. The magnetization hysteresis loops (MHLs) exhibit flux jumps in the low temperature region, and a second peak-effect in the intermediate temperature region, especially when the field sweeping rate is low. Interestingly a third magnetization peak can be easily observed on the MHLs in the high temperature region. Further analysis find that the first magnetization peak is very sharp, which is associated with the strong vortex pinning. However the first dip of the MHL corresponds to a moderate relaxation rate, then a second peak appears accompanied by a vanishing vortex motion. Finally a third magnetization peak emerges and the vortex motion becomes drastic beyond this threshold. The novel features accompanying the second magnetization peak suggest a new type of vortex phase transition.

قيم البحث

اقرأ أيضاً

117 - Wang Cheng , Hai Lin , Bing Shen 2018
We investigate the vortex dynamics in two typical hole doped iron based superconductors CaKFe$_4$As$_4$ (CaK1144) and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (BaK122) with similar superconducting transition temperatures. It is found that the magnetization hy steresis loop exhibits a clear second peak effect in BaK122 in wide temperature region while it is absent in CaK1144. However, a second peak effect of critical current density versus temperature is observed in CaK1144, which is however absent in BaK122. The different behaviors of second peak effect in BaK122 and CaK1144 may suggest distinct origins of vortex pinning in different systems. Magnetization and its relaxation have also been measured by using dynamical and conventional relaxation methods for both systems. Analysis and comparison of the two distinct systems show that the vortex pinning is stronger and the critical current density is higher in BaK122 system. It is found that the Maleys method can be used and thus the activation energy can be determined in BaK122 by using the time dependent magnetization in wide temperature region, but this is not applicable in CaK1144 systems. Finally we present the different regimes with distinct vortex dynamics in the field-temperature diagram for the two systems.
We have investigated the magnetization properties and flux dynamics of superconducting Cu$_x$TiSe$_2$ single crystals within wide range of copper concentrations. We find that the superconducting anisotropy is low and independent on copper concentrati on ($gammasim1.7$), except in the case of strongly underdoped samples ($xleq0.06$) that show a gradual increase in anisotropy to $gammasim1.9$. The vortex phase diagram in this material is characterized by broad region of vortex liquid phase that is unusual for such low-$T_c$ superconductor with low anisotropy. Below the irreversibility line the vortex solid state supports relatively low critical current densities as compared to the depairing current limit ($J_c/J_0sim10^{-7}$). All this points out that local fluctuations in copper concentration have little effect on bulk pinning properties in this system.
We study topological vortex phases in iron-based superconductors. Besides the previously known vortex end Majorana zero modes (MZMs) phase stemming from the existence of a three dimensional (3D) strong topological insulator state, we show that there is another topologically nontrivial phase as iron-based superconductors can be doped superconducting 3D weak topological insulators (WTIs). The vortex bound states in a superconducting 3D WTI exhibit two different types of quantum states, a robust nodal superconducting phase with pairs of bulk MZMs and a full-gap topologically nontrivial superconducting phase which has single vortex end MZM in a certain range of doping level. Moreover, we predict and summarize various topological phases in iron-based superconductors, and find that carrier doping and interlayer coupling can drive systems to have phase transitions between these different topological phases.
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th at eliminates the MZMs. In this work, we show that the phenomenology in higher-order topological insulators (HOTIs) can be qualitatively distinct. In particular, we find two distinct features. (i) We find that vortices placed on the gapped (side) surfaces of the HOTI, exhibit a pair of phase transitions as a function of doping. The first transition is a surface phase transition after which MZMs appear. The second transition is the well-known vortex phase transition. We find that the surface transition appears because of the competition between the superconducting gap and the local $mathcal{T}$-breaking gap on the surface. (ii) We present numerical evidence that shows strong variation of the critical doping for the vortex phase transition as the center of the vortex is moved toward or away from the hinges of the sample. We believe our work provides new phenomenology that can help identify HOTIs, as well as illustrating a promising platform for the realization of MZMs.
We predict a new effect in condensed matter surface magnetization of the vortex phase of a superconductor induced by electric field. The magnetized superconductor should be one of the plates of a plane capacitor on which a voltage has to be applied. Applying alternating voltage to the capacitor, electrostatic induction leads to oscillations of the magnetic moment which has to be measured by electromotive force inducted in a detector coil. The derived explicit formula for the magnetization contains the effective mass of Cooper pairs and a systematic investigation of the predicted magnetization will lead to a creation of an effective Cooper pair mass spectroscopy. For cleaved superconductors this effective mass is a property of the bulk material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا