ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic sys tem is achieved, as observed from the saturation of the isotropic component of the $^{209}$Bi NMR shift above a certain magnetic field. The corresponding spin splitting, defined in the phenomenological approach of a 3D electron gas with a large (spin-orbit-induced) effective $g$-factor, scales as expected with the Fermi energy independently determined by simultaneous transport measurements. Both the effective electronic $g$-factor and the contact hyperfine coupling constant are precisely determined. The magnitude of this latter reveals a non negligible $s$-character of the electronic wave function at the bottom of the conduction band. Our results show that the bulk electronic spin polarization can be directly probed via NMR and pave the way for future NMR investigations of the electronic states in Bi-based topological insulators.
In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we have shown that the lifting of the electron spin degeneracy in the integer quantum Hall effect at high filling factors should be interpreted as a magnetic-field-induced Stoner transition. In this work, we extend the analysis to investigate the influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors. The single-particle Zeeman energy is tuned through the application of an additional in-plane magnetic field. Both the evolution of the spin polarization of the system and the critical magnetic field for spin splitting are well described as a function of the tilt angle of the sample in the magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا